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Abstract

Understanding 3D objects from images is fundamental
to robotics and AR/VR applications. While recent work
has made progress in category-level pose estimation, cur-
rent representations fail to capture the fine-grained se-
mantics needed for reasoning about object parts, func-
tions, and interactions. We identify the next frontier in
3D object understanding as monocular category-level 3D
correspondence—predicting, from a single image, 3D lo-
cations that remain consistent across instances within a
category. To enable research in this direction, we intro-
duce HouseCorr3D, the first large-scale benchmark for
monocular category-level 3D correspondence with 178k im-
ages across 50 household object categories, 280 unique in-
stances, and 3D keypoint annotations directly on CAD mod-
els. Crucially, HouseCorr3D provides amodal correspon-
dence labels for occluded regions and explicit symmetry an-
notations, addressing key limitations of existing datasets.
We further propose Morpheus, a framework that learns
morphable category-level shape priors to establish seman-
tically consistent 3D correspondences in camera space. By
learning deformable canonical models, Morpheus moves
beyond traditional pose-centric approaches to enable fine-
grained, correspondence-level object understanding. Ex-
periments demonstrate that Morpheus significantly outper-
forms baselines, establishing a new paradigm for 3D object
understanding.

1. Introduction

Understanding objects in 3D from images is a long-standing
challenge in computer vision, with applications in robotics,
augmented reality (AR), and virtual reality (VR). Tradi-
tional 3D object understanding has primarily focused on
pose estimation, object detection, or 3D reconstruction.
However, current approaches fail to capture the fine-grained
semantics needed for reasoning about object parts, their
functions, and how they can be manipulated or interacted
with. A key step toward richer understanding is to establish
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semantic correspondences – estimating which points on dif-
ferent objects represent the same functional part. In 2D, this
problem has driven extensive research [16, 26, 27, 29, 37],
enabling applications like image matching, retrieval, and
style transfer. Yet, 2D correspondences are inherently lim-
ited by viewpoint dependence, occlusion, and symmetry
ambiguities. We therefore propose to move beyond 2D, and
towards the prediction of semantically aligned 3D locations
that remain consistent across all instances of a category (as
illustrated in Fig. 1). Unlike prior work that maps pixels into
normalized canonical spaces [19, 45], we suggest establish-
ing correspondences directly in camera space, yielding an
unambiguous representation for evaluation and downstream
reasoning. Formally, we define this novel task as follows:

Monocular Category-level 3D correspondence:
Given two query and target RGB-D images Iq and It of
objects from the same category, and a query 3D point
xq∈R3 in the camera space of Iq , the task is to predict
the 3D point xt ∈ R3 in It camera space that corre-
sponds to the same semantic part.

We illustrate the monocular category-level 3D corre-
spondence in camera space setup via 3D meshes in
Fig. 3a. Unfortunately, existing benchmarks such as
NOCS-Real275 [45], Wild6D [7], OmniNOCS [19], and
Omni6DPose [61] only provide pose annotations, segmen-
tation, and depth, but lack category-level 3D correspon-
dences. To address this gap, we introduce HouseCorr3D,
a large-scale benchmark for monocular category-level 3D
correspondence in camera space. HouseCorr3D covers
50 everyday object categories with 178k images and 280
unique object instances, each annotated with semantic 3D
keypoints directly on CAD models that project consistently
across all views. Crucially, our annotations include amodal
correspondences—correspondences for object parts that are
occluded or not visible in the image. This capability is in-
spired by human reasoning [57], where we naturally infer
the complete 3D structure of objects even under occlusion,
and is essential for robotic manipulation where planning
grasps and interactions requires understanding the full spa-
tial extent of objects [53], not just visible surfaces. We also
explicitly annotate object symmetries, ensuring symmetric
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Figure 1. Monocular Category-level 3D Correspondence. We predict semantically consistent 3D keypoint locations across different in-
stances of the same category from single RGB-D images. Our morphable priors enable establishing correspondences (shown with matching
colors) that remain semantically aligned despite large shape variations, enabling fine-grained object understanding beyond traditional pose
estimation and 2D semantic correspondence.

objects have multiple valid correspondences and avoiding
unfair penalization of symmetry-equivalent predictions. To-
gether, these properties address fundamental limitations of
pose-focused datasets and, for the first time, enable quanti-
tative evaluation of category-level 3D correspondence from
single images.

Building on our benchmark, we propose Morpheus, a
framework that learns morphable category-level shape pri-
ors to establish consistent 3D correspondences across in-
stances directly in camera space. Instead of relying on
a fixed canonical representation, Morpheus learns a de-
formable 3D template for each category that adapts to
instance-specific shape variations while preserving corre-
spondences. During training, our method jointly optimizes
a 3D morphable prior, instance-specific shape deforma-
tions, and their 2D projection consistency. At inference,
given a single RGB-D image, Morpheus predicts both the
object’s 3D shape in camera space and its semantically
aligned keypoints, enabling direct correspondence evalua-
tion without pose normalization.

In summary, our contributions are as follows:
(i) We identify monocular category-level 3D corre-

spondence in camera space as a key next step be-
yond pose-centric representations toward semanti-
cally aligned 3D understanding.

(ii) We introduce HouseCorr3D, the first large-scale
benchmark for category-level 3D correspondence,
comprising 178k images across 50 household cate-
gories and 280 instances, with mesh-based keypoint
annotations, amodal correspondences, and explicit
symmetry labels.

(iii) We propose Morpheus, a framework that learns mor-
phable category-level shape priors to establish se-
mantically consistent 3D correspondences directly in
camera space.

(iv) We demonstrate that Morpheus substantially out-
performs existing baselines on HouseCorr3D,
establishing a new paradigm for fine-grained,
correspondence-level 3D object understanding.

2. Related work

2D Semantic Correspondence. 2D correspondence has
advanced from local descriptors and dense flows (e.g.,
SIFT [25], DAISY [42], SIFT Flow [22], DeepFlow [47]) to
transformer-based self-supervised features [3, 32, 60, 63],
which exhibit emergent semantic alignment and achieve
strong results on benchmarks like SPair-71K, PF-PASCAL,
and TSS [13, 21, 27]. Dedicated matchers such as LoFTR,
COTR, DiffMatch [16, 29, 37], and spherical-map ap-
proaches [6, 26] further improve dense matching. While
highly effective, these approaches remain limited to the im-
age domain and do not predict 3D canonical coordinates or
enforce semantic consistency across instances in 3D space.

3D Keypoint and Correspondence Methods. Prior
work explored correspondence mapping in the 3D domain
through keypoint detection and surface mapping. Key-
pointNet [58] introduced a large-scale dataset for learn-
ing category-consistent 3D keypoints, while others [15, 56]
leverage keypoints for cage-based deformations and shape
control. Canonical surface mapping [20] establishes cor-
respondences by predicting UV coordinates on canonical
templates, and Mesh R-CNN [8] jointly predicts mesh
reconstructions with instance segmentation from 2D im-
ages. Recent semantic alignment methods [24, 44, 59]
explore learning consistent correspondences across cate-
gories and human poses in 3D. DenseMatcher [64] extends
matching to the mesh domain via functional maps, pro-
jecting multiview features onto 3D geometry. However,
these approaches have fundamental limitations: Keypoint-
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Net [58], Keypointdeformer [15], Yifan et al. [56], and
DenseMatcher [64] require ground-truth 3D meshes as in-
put; methods like [15, 24, 59] operate exclusively in 3D
space without bridging to image-based features; and criti-
cally, none provide large-scale evaluation benchmarks with
explicit handling of occlusion and symmetry. These lim-
itations prevent their applicability to real-world scenarios
where RGB(-D) images are predominantly available.

Morphable Models and Shape Priors. Morphable
models achieve category-level understanding by capturing
intra-class shape variability through deformable canoni-
cal templates. Classic work focused on faces and human
bodies (e.g., 3D Morphable Models [1], SMPL [23]), es-
tablishing the foundation for template-based shape model-
ing. Recent approaches [17, 30, 35, 36] extend these ideas
to more diverse object classes using learned deformations
or diffusion-guided generation. Deformation-based meth-
ods [11, 41, 46] map instances to template meshes using
neural networks, while template-free approaches [31] learn
canonical coordinate systems without relying on a single
exemplar. More recent work leverages foundation models
for semantic alignment across categories [30, 35], where
semantically corresponding parts map to consistent repre-
sentations. Domain-specific efforts have also addressed hu-
man bodies [12] and a range of animals [52]. Despite this
progress, generalizing morphable models to diverse every-
day objects with consistent 3D correspondences across in-
stances remains an open challenge, especially for methods
that operate only from image inputs.

Benchmarks for Category-Level 3D Understanding.
To the best of our knowledge, there exists no dataset that
enables category-level 3D correspondence evaluation from
monocular images. Prior works [49] lift 2D images from
domain-specific datasets [43, 48] to 3D using multi-view
consistency but lack 3D evaluation benchmarks. Large-
scale 3D shape collections such as ShapeNet [4] and Mod-
elNet [50] provide CAD meshes, while ShapeNetPart [55]
and PartNet [28] add part-level labels, but these lack
consistent point-level correspondences across instances.
Pose-focused datasets like Omni6DPose [61], CO3D [33],
Pix3D [38], Pascal3D+ [51], and Omni3D [2] provide pose
annotations in realistic scenes but do not supply semantic,
amodal, or point-level correspondences across diverse in-
stances. NOCS datasets [19, 45] introduced normalized co-
ordinate spaces for pose estimation but are not designed
for evaluating category-level correspondences. DenseC-
orr3D [64] takes a valuable step with part-level mesh anno-
tations and functional-map evaluation, but operates exclu-
sively in 3D with pre-reconstructed meshes. Thus, current
3D benchmarks do not bridge the gap between 2D-based
and 3D correspondence methods.
In contrast, HouseCorr3D is explicitly designed for
category-level 3D correspondence evaluation from monoc-

Table 1. Comparison to existing correspondence datasets. Prior
benchmarks are limited in their evaluation to either 2D camera
space or 3D object space. In contrast, HouseCorr3D focuses on
3D camera space across 50 classes. This allows us to evaluate the
reasoning capabilities of monocular methods, including amodal
correspondences without ambiguous object spaces.

Dataset pairs classes input eval. space

Pascal-Parts [5] 4k 20 2D 2D camera
PF-Pascal [13] 2k 20 2D 2D camera
Spair71k [27] 71k 18 2D 2D camera
KeyointNet [58] N/A 16 3D 3D object
CorresPondenceNet [24] N/A 25 3D 3D object
DenseCorr3D [64] N/A 23 3D 3D object
HouseCorr3D 178k 50 2.5D 3D camera

ular images, featuring 3D keypoints shared across all in-
stances within 50 object categories, with amodal labels for
occluded regions and explicit symmetry handling. This ad-
dresses a fundamental gap in current datasets and enables
quantitative evaluation of correspondence-based 3D object
understanding in camera space.

3. Monocular Category-level 3D Correspon-
dence Benchmark

Motivation. We introduce the first benchmark for category-
level correspondences in 3D camera space. Unlike prior
datasets that focus exclusively on correspondences in ei-
ther 2D camera space [13, 27, 39, 43, 48] or 3D object
space [64]. On the one hand, compared to reasoning in 3D
object space, advancing monocular methods at estimating in
3D camera space, removes the need for ambiguous object-
centric spaces, whereby neither the center nor the scale is
well-defined. On the other hand, compared to estimation
in 2D camera space the 3D camera space enables: a) the
evaluation of amodal correspondences, b) modeling object
symmetries explicitly, and c) enforcing methods to perform
3D over 2D reasoning.

Task definition. Given two RGB-D images Iq and It

depicting objects from the same category, and a query 3D
point xq ∈ R3 in the camera space of Iq , the task is to
predict the corresponding 3D point xt ∈ R3 in the cam-
era space of It that represents the same semantic part of
the object. Formally, it can be expressed as a mapping
f : (xq, Iq, It) → xt. The evaluation is performed using
the euclidean distance between the groundtruth target point
xt and the predicted target point x̂t, defined as

d(x̂t, xt) =
∥∥x̂t − xt

∥∥
2
. (1)

The performance of a model is measured by computing
the percentage of correctly predicted points within a given
threshold on the euclidean distance (e.g., PCK@0.1), using
the largest of, width w, height h, and depth d of the object’s
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Figure 2. Dataset Overview. We annotate up to 19 3D keypoints directly on CAD meshes for 5–13 instances per category, covering 50
common household object classes. The keypoints are chosen to be semantically consistent and shared across all instances within each
category We visualize a subset of these annotations across several categories to highlight their cross-instance and cross-shape consistency.
Visualizations for the full dataset are provided in Sec. D.

3D bounding box, as: d(x̂t, xt) < 0.1 ·max(h,w, d). This
follows the conventions of other monocular 2D correspon-
dence benchmarks [13, 27, 39, 43, 48], where the maximum
width and height of the 2D bounding box are used to nor-
malize the distance and compute PCK. Further discussion
of correspondence evaluation, including the distinction be-
tween modal and amodal settings, is provided in Sec. G.

HouseCorr3D. We build our dataset on
Omni6DPose [61], a large-scale synthetic dataset de-
signed for category-level pose estimation in crowded
scenes. We crop the images to obtain 178k test and 2.6M
train images across 50 categories. We find 178k image
pairs, by choosing a random image for each test image,
which contains another instance. We specifically leverage
Omni6DPose synthetic subset, which provides photo-
realistic renderings with high-quality CAD models of real
object instances, natural lighting, cluttered scenes, and
realistic occlusions. Unlike the real subset which contains
limited instance diversity (typically 1–2 instances per
category) and repetitive scene layouts due to video-frame
extraction, the synthetic data provides greater scale and
instance diversity, which is beneficial for learning robust
category-level correspondences. We select 50 everyday
object categories spanning household items (mugs, bottles,
remotes), food items (fruits, vegetables), toys (cars, planes,
animals), and accessories (backpacks, shoes, wallets),
chosen to maximize shape diversity and practical relevance
for robotic manipulation. For each category, between 2 and
16 semantic 3D keypoints are annotated directly on CAD
meshes (see Fig. 2).

Keypoint Annotation Protocol. Keypoints must be
shared across all instances of a category and are selected
to be geometrically distinctive and semantically mean-
ingful [40]—marking corners, edges, handle centers, or
other salient structural features rather than arbitrary surface
points. This ensures that annotations are both reliably local-
izable and transferable across instances. To ensure annota-

tion quality and consistency, we employ a rigorous protocol
(more details in Sec. D) involving two annotators1 indepen-
dently annotate the same set of meshes using an interactive
3D tool. Following this process, a two-stage merging pro-
cess is applied including an initial automatic merging step
which computes mutual nearest-neighbor matches between
the two annotation sets across all instances based on dis-
tance (5%-threshold of object bounding-box diagonal) and
consistency (pairs of keypoints are matched consistently),
annotations are considered accepted or undecided. Then
a second manual merging step is performed for undecided
keypoints. Annotators use an interactive 3D viewer display-
ing multiple instances side-by-side to manually resolve am-
biguities: accepting, rejecting, splitting, or merging annota-
tions based on semantic and geometric consistency. The en-
tire annotation process took approximately 65h across both
annotators, yielding a total set of 2329 3D keypoint annota-
tions on meshes by annotating between 2 and 19 keypoints
per instance. Once keypoints are annotated on 3D meshes,
we leverage ground-truth poses from Omni6DPose [61] to
automatically project them into all rendered views, generat-
ing consistent 2D–3D correspondences across 178k pairs of
images with minimal additional manual effort. This mesh-
centric strategy offers three key advantages: (i) it enforces
semantic consistency across all views and instances, (ii) it
naturally provides amodal labels for occluded regions, and
(iii) it efficiently scales a compact set of 3D annotations into
a large-scale benchmark spanning 178k pairs across 50 cat-
egories and 280 instances. The resulting benchmark inherits
the visual realism of Omni6DPose, featuring natural light-
ing, cluttered scenes, and partial occlusions.

Symmetry Handling. Many everyday objects exhibit
geometric symmetries that introduce fundamental ambigui-
ties in correspondence. For instance, a cylindrical mug body

1Annotators were trained on best practices for selecting geometrically
distinctive and semantically meaningful keypoints that are reliably localiz-
able and consistent across instances.

4



is rotationally symmetric—any point on the rim can rotate
to any other without changing the object’s shape. To the
best of our knowledge, existing semantic correspondence
benchmarks have not addressed symmetries, as they oper-
ate purely in 2D where such geometric constraints are dif-
ficult to define. By leveraging 3D annotations, HouseC-
orr3D explicitly handles rotational and reflective symme-
tries, ensuring that geometrically equivalent predictions are
not unfairly penalized. Rotational symmetry is handled by
treating all points on the orbit generated by rotations around
the symmetry axis as valid correspondences, while reflec-
tive symmetry allows predictions to match either a keypoint
or its mirrored counterpart. This yields a fair metric that
respects the inherent geometric ambiguities in real-world
objects and enables robust evaluation of category-level cor-
respondence methods. Mathematical definitions and evalu-
ation details are provided in Sec. G.

4. Method

Our goal is to predict the 3D shape of an object in camera
space from a single RGB-D image, such that corresponding
3D keypoints across different object instances align consis-
tently in the 3D camera coordinate frame. To achieve this,
we introduce Morpheus, a framework that combines robust
6D pose diffusion with 3D morphable priors. We start by
describing how to predict 3D correspondences in camera
space in Sec. 4.1. Subsequently, we explain our architecture
of morphable models in Sec. 4.2, and finally we elaborate
on the objectives in Sec. 4.3.
Notation We denote a mesh as M= {V,E}, with vertices
V= {vi ∈R3}|V|

i=1 and edges E = {(vi, vj)e}|E|
e=1. For cor-

respondence tasks, we distinguish query and target elements
using superscripts −q and −t (e.g., Mq and Mt). We de-
note a deformed mesh as Mdef (defined in Sec. 4.2), and its
transformation into camera space with pose π as Mdef (π).

4.1. Mesh-based 3D Correspondence Prediction

Morpheus predicts for each RGB-D image a deformed tem-
plate mesh Mdef in canonical object-centric space. Using
6D pose diffusion [61], we can robustly estimate the 6D
pose π for the query image and the target image, πq and
πt respectively. Note, that this approach requires an object
mask to sample 3D points from the object. Combined, we
pose the deformed template mesh into the camera space as
Mdef (π). For each pair of images Iq and It, we first esti-
mate their deformed meshes in 3D camera space, Mq

def (π
q)

and Mt
def (π

t) respectively. Subsequently, we project each
3D query point xq onto the surface of Mq

def (π
q), result-

ing in the surface point x̂q . Finally, we transform x̂q to the
target camera space using barycentric coordinates x̂t, illus-
trated in Fig. 3a.

4.2. 3D Morphable Priors
A central component of Morpheus is the 3D morphable
prior, a category-level canonical shape space that enables
semantically consistent correspondences across instances.
It consists of a canonical mesh capturing the common struc-
ture of a category, along with a learned deformation model
that adapts it to individual instances. We call it a prior
because all predictions are constrained to be deformations
of this canonical representation. Since each vertex of the
template retains its identity across deformations, seman-
tic correspondences are preserved by design: pixels from
different instances that map to the same canonical vertex
correspond to the same semantic part. However, this ap-
proach raises several challenges that need to be adressed:
(i) how to learn an appropriate canonical mesh that cap-
tures category structure, (ii) how to parametrize and learn
deformations in a flexible yet stable manner, and (iii) how
to ensure that learned deformations preserve semantic cor-
respondence rather than collapsing to arbitrary mappings.
We address these challenges through our hybrid volumet-
ric mesh representation [34], vertex-wise affine deformation
fields, and targeted regularization, as described below.

Canonical Shape Representation. Traditional mesh-
only representations are often fragile and difficult to opti-
mize directly, typically requiring manual interventions such
as remeshing [9, 54]. To overcome this limitation, we em-
ploy a hybrid volumetric mesh representation [34]. This
integrates the strengths of implicit and explicit 3D mod-
els. Concretely, the category-level shape is represented as a
signed distance field ϕsdf , which provides the flexibility to
model intricate geometries. Through Differentiable March-
ing Tetrahedra [34], the SDF is efficiently transformed into
a mesh in a differentiable manner by evaluating SDF val-
ues on a tetrahedral grid. This formulation enables the use
of mesh-based priors and regularizations, such as enforcing
rigidity constraints during deformation learning.

Instance-Specific Deformations. To adapt this canon-
ical mesh to specific instances, we apply an affine defor-
mation field, following [62]. Unlike Zheng et al. [62],
where deformations are applied directly to the signed dis-
tance field, we act on the template mesh vertices [49]. This
avoids repeatedly extracting meshes for each instance and
is thus more computationally efficient. Formally, we define
an affine mapping ϕa : R3×L → R3, which displaces each
vertex v of the canonical mesh according to the instance-
specific latent code l:

ϕa(v, l) = α(v, l)⊙ v + δ(v, l), (2)

where α, δ : R3 × L → R3 are produced by an MLP that
takes both the vertex coordinate v and the latent code l as
input. The latent code l = ψl(I) itself is computed from
the input image I by a deformation encoder ψl built from
a DINOv2 backbone with a light convolutional head. This
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Figure 3. (a) Monocular Category-Level 3D Correspondence. Given a query point xq ∈ R3 in one camera space and a target point
xt ∈ R3 in another camera space. The task is to predict the correspondence between these points. In our approach, we first project the query
point onto the mesh Mq

def in the query camera space. Second we transform to the mesh Mt
def in the target camera space via barycentric

coordinates. (b) Pipeline Overview. Given an RGB-D image, the deformation encoder ψl extracts an instance-specific latent deformation
code l. This code drives a Deformation Decoder ϕa that morphs the learned 3D prior to fit the observed instance. The deformed prior is
transformed to camera space using the 6D pose diffusion. During training, we supervise with amodal 2D and 3D objectives, to handle
occlusions. Further, we provide 6D pose supervision to mitigate local minimas. Moreover, we regularize the deformation to encourage
semantically consistent deformations.

code parametrizes vertex-wise displacements, enabling the
mesh to morph into the observed instance while preserving
semantic alignment. The resulting instance-adapted mesh is
written as Mdef (I) = {Vdef (I),E}, where each deformed
vertex is given by Vdef (I) = {ϕa(vi, ψl(I))}|V|

i=1. For sim-
plicity, we simply rewrite it as Mdef = ϕa(M, l). Through
the deformation, vertices maintain consistent identities, en-
abling category-level correspondence prediction without re-
quiring explicit supervision on keypoint locations.

4.3. Training Objectives
Morpheus is trained on object-centric images. We jointly
optimize the template and deformation model using geo-
metric objectives: 2D mask-based reconstruction, 3D mesh-
based reconstruction, and mesh regularization. These re-
construction terms enforce consistency between rendered
projections of the canonical mesh and the segmentation
masks. Mesh regularization promotes rigidity in instance-
specific deformations and hence maintains plausible canon-
icalization. Together, these objectives encourage the model
to reconstruct category-consistent canonical meshes while
preserving instance-specific details. In contrast to previous
works [49], we provide 6D pose supervision to mitigate lo-
cal minima. Moreover, we provide 2D amodal and 3D su-
pervision to remain robust to occlusions.

2D Loss. We first supervise using amodal object masks.
Given the predicted mask m̃(Mdef , I, π) rendered from the
deformed mesh Mdef under pose π, we compare against
the ground-truth amodal mask m with a pixel-wise mean
squared error:

Lm(Mdef , I, π,m) =
∥∥m̃(Mdef , I, π)−m

∥∥2. (3)

Additionally, we encourage overlap with the distance trans-

form mdt of the ground-truth amodal mask:

Lmdt(Mdef , I, π,mdt) = −m̃(Mdef , I, π)mdt, (4)

with mdt encoding the distance of each pixel inside the
mask to the silhouette boundary, while pixels outside the
mask are zero, which prevents disconnected parts from
emerging when fitted across diverse instances.

3D Loss. To ensure accurate 3D instance reconstruc-
tions, we use a Chamfer distance between the deformed
mesh vertices Vdef and the ground-truth mesh vertices Vgt.

LCD(I,Mdef ,Mgt) =
1

|Vdef |+|Vgt|( ∑
vi∈Vdef

∥vi − v′
χ(vi)

∥+
∑

v′
i∈Vgt

∥v′
i − vχ(v′

i)
∥
)
, (5)

where χ denotes the nearest neighbor operator.
Template and Deformation Regularization. Follow-

ing [10], we enforce the SDF property with the Eikonal loss
Lsdf , penalize large deformation with an ℓ2 term: Ldef ,
and encourage smoothness with an edge-based regulariza-
tion Lsmooth [62]. Their definitions are provided in Sec. E.

Full Training Loss. Our optimization proceeds in two
stages. First, we refine the category-level template using
only geometric terms:

Lgeo = λCDLCD + λmLm + λmdtLmdt + λsdfLsdf . (6)

After convergence, we learn the instance deformations with
the extended regularized loss:

Lgeo-reg = Lgeo + λdefLdef + λsmoothLsmooth. (7)
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Figure 4. Qualitative results. We compare 2D feature matching method DINOv2, with 3D space matching methods GenPose++, Mag-
icPony, and Morpheus. For DINOv2 and GenPose++ we visualize the 2D modal correspondences. For MagicPony and Morpheus, we
visualize the predicted deformed meshes in camera space with a color scheme encoding semantic correspondences across instances (see
Sec. F). Our occlusion-aware training allows Morpheus to be robust in case of occlusions in contrast to MagicPony, which is only trained
on 2D supervision. Further, pose-aware training results in higher consistency for semantic parts across different viewpoints. Note that
DINOv2 often confuses parts, and GenPose++ may predict points outside the object due to its lack of shape-deformation modeling.

5. Experiments

We evaluate Morpheus on the proposed HouseCorr3D
benchmark, focusing on its ability to recover category-
level 3D correspondences. We compare Morpheus with
strong 2D correspondence baselines such as NOCS and DI-
NOv2, as well as 3D space matching methods such as Mag-
icPony and GenPose++. We first provide experimental de-
tails in Sec. 5.1, then elaborate on the evaluation metrics in
Sec. 5.2. We describe all baselines in Sec. 5.3 and finally
compare with prior work in Sec. 5.4.

5.1. Experimental Details

Morpheus uses a pretrained ViT-S DINOv2 image en-
coder [32] as backbone, and a pretrained 6D pose diffu-
sion network [61]. From an input resolution of 4482, the
backbone maps to a 322 feature map. The deformation en-
coder is implemented as a ResNet head [14] that aggregates
multi-scale feature maps with bottleneck blocks to produce
refined latent deformation l. The deformation decoder is
a coordinate-conditioned MLP that fuses 3D point embed-
dings with latent deformation to predict deformations. To
learn the initial template shape, we train each category-
specific morphable model using the Adam optimizer [18]
with a learning rate of 10−4 and a batch size of 30. Train-
ing proceeds in two stages: (i) 20 epochs optimizing the
loss in Eq. (6), and (ii) 10 further epochs optimizing the
extended loss in Eq. (7), which includes deformation regu-
larizers. Training on a NVIDIA RTX 2080 takes about 12h.

5.2. 2D and 3D Metrics

For our benchmark, we use the percentage of correct key-
points (i.e., PCK@0.1) as described in Sec. 3. We differen-
tiate between 2D evaluation, where the distance is measured
in pixel space and the threshold depends on the 2D bound-
ing box, and 3D evaluation, where the distance is mea-
sured in camera space and the threshold depends on the 3D
bounding box. In 3D, we further distinguish between modal
correspondences (where the keypoint is visible in both im-
ages) and amodal correspondences (where one keypoint is
occluded). Ambiguities due to object symmetries can lead
to multiple valid correspondences, which we handle sepa-
rately. We provide more details in Sec. G.

5.3. Baselines

Given our newly defined task, we made every effort to iden-
tify competitive baselines capable of processing RGB-D in-
put data and producing predictions in both 2D and 3D do-
mains. We first compare against 2D feature-matching base-
lines such as NOCS [45] and DINOv2 [32], where each
pixel is represented by a feature vector in Rd and matched
to its nearest neighbor in the target image. In this context,
predicted NOCS coordinates are treated as features in R3.
For MagicPony, we render its canonical-space coordinates
and use the rendered results as a 2D feature-matching base-
line (denoted as MagicPony2D). Using the target image’s
depth map, the predicted 2D pixels can be reprojected into
3D, enabling 3D modal correspondences. However, since
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Table 2. PCK@0.1 results for 2D, 3D modal, and 3D amodal cor-
respondences on a subset of HouseCorr3D. Morpheus outperforms
all 2D correspondence methods (DINOv2, NOCS, MagicPony2D)
and 3D methods (GenPose++ (GP), MagicPony). Note that Mag-
icPony relies only on 2D supervision and is unaware of real-world
scale, thus we use GenPose++ for translation and scale.

Method � ê v k T mean (50)
2D

DINOv2 7.0 15.2 17.1 13.3 14.0 10.6 22.9
MagicPony2D 6.4 7.7 8.8 7.2 22.9 9.1 15.7
NOCS 27.2 20.7 14.0 42.6 23.7 16.6 26.7
GenPose++ (GP) 37.0 28.8 20.5 50.2 30.0 26.7 36.3
MagicPony+GP 4.8 7.2 4.1 4.2 22.1 8.1 10.7
Morpheus w/o Def. 39.9 32.0 22.5 51.8 34.2 29.5 39.1
Morpheus 40.9 34.8 28.1 57.1 36.5 31.3 41.2

3D (Modal + Amodal)
GenPose++ (GP) 18.8 18.2 14.4 37.1 27.5 17.9 34.3
MagicPony+GP 1.2 2.1 0.9 0.9 10.8 2.2 7.1
Morpheus w/o Def. 22.7 21.6 16.5 41.3 35.0 19.8 38.4
Morpheus 23.7 26.0 21.0 47.9 39.2 22.5 41.5

3D Modal
DINOv2+D 5.7 9.2 7.5 14.4 16.4 11.0 24.4
MagicPony2D+D 3.9 3.1 2.7 4.7 22.7 10.1 14.0
NOCS+D 6.5 13.5 4.5 34.6 24.0 7.4 26.4
GenPose++ (GP) 22.9 14.9 12.9 38.5 27.9 27.5 37.0
MagicPony+GP 2.5 2.1 1.1 0.3 14.7 4.1 7.5
Morpheus w/o Def. 25.2 16.8 17.2 44.5 35.2 27.8 40.2
Morpheus 26.0 23.6 19.9 49.2 38.8 33.8 43.7

3D Amodal
GenPose++ (GP) 17.1 19.2 14.8 36.7 27.3 15.0 32.9
MagicPony+GP 0.7 2.1 0.9 1.1 9.1 1.6 7.1
Morpheus w/o Def. 21.6 23.1 16.3 40.3 34.9 17.3 37.8
Morpheus 22.8 26.7 21.3 47.5 39.4 19.0 40.8

occluded regions are not visible, the 3D amodal correspon-
dence task cannot be solved using any 2D baseline.

On the other hand, we compare with 3D space matching
baselines such as GenPose++ and MagicPony. MagicPony
also uses a 3D morphable prior; thus, the template mesh can
be used to match points in 3D as explained in Sec. 4.1. In
contrast, GenPose++ does not predict a 3D shape, but only a
6D pose. However, we can transform the query points from
camera space into the normalized object-centric space us-
ing the inverse query camera pose, and further to the target
camera space using the target camera pose. As MagicPony
is unaware of the real scale, we apply the translation and
object scale from GenPose++ for 3D space matching. The
rotation from GenPose++ is not applicable to MagicPony,
as it has an arbitrary canonical template pose.

5.4. Comparison with Prior Work
Overall, Tab. 2 shows that Morpheus sets a new state-of-the-
art result on all 2D and 3D correspondence metrics. Fig. 4
illustrates qualitative predictions of Morpheus.
Occlusions. 2D feature matching methods such as NOCS
or DINOv2 cannot handle occlusions by design, and cannot
evaluate them in the 3D amodal setting. In Fig. 4, we also
observe how DINOv2 confuses the back of the airplane with
the front of another one, which is occluded in the query im-
age. Furthermore, we observe qualitatively that MagicPony
suffers from lack of occlusion-aware training, such that the

query airplane is cut off in the estimated mesh. In contrast,
Morpheus successfully reconstructs occluded parts. We can
see that the PCK@0.1 drops from 43.7% for modal 3D cor-
respondences to 40.8% for amodal correspondences.
Normalized Object Space. Finding correspondences using
a normalized object space alone is insufficient. We can see
this from the NOCS baseline, which Morpheus outperforms
for both 2D and 3D modal correspondences, and from the
fact that Morpheus improves over GenPose++, which uses
the NOCS space to match query to target points. Quali-
tatively, in Fig. 4, we observe how GenPose++ incorrectly
matches the right wing of an airplane to a location outside
the target airplane’s smaller wing range. Similarly, the right
handle of the motorcycle is matched inside the target mo-
torcycle, even though it should lie further outward.
MagicPony. Beyond occlusions, MagicPony struggles to
recover consistent rotations across images, essential for re-
liable correspondences. Qualitatively, we observe that ob-
jects (e.g., airplanes) barely rotate; instead, the model com-
pensates through deformation to fit the image, leading to
incorrect correspondences. In Tab. 2, MagicPony2D outper-
forms the 3D space matching variant, likely due to its 2D-
only supervision and noisy pose predictions. Morpheus out-
performs MagicPony through pose- and occlusion-aware
training, achieving better shape prediction and higher con-
sistency across viewpoints. We encourage the community
to build upon MagicPony’s impressive approach to learning
3D morphable models with only 2D supervision.
SPair71k. Thanks to its broader category diversity, our
benchmark is more challenging than SPair71k [27], as
seen in the performance gap: DINOv2 achieves 52.7% on
SPair71k but drops to only 22.9% on HouseCorr3D.

6. Conclusion
This paper introduces a paradigm shift from correspon-
dence evaluation in 2D camera space or 3D object space
toward monocular category-level 3D correspondences in
camera space. HouseCorr3D provides 50 everyday cat-
egories in crowded scenes with mesh-based annotations,
establishing a solid foundation for comparing monocular
3D correspondence methods with explicit handling of sym-
metries, occlusions, and challenging amodal correspon-
dences. We demonstrate that solving this task requires
moving beyond 2D feature matching. Morpheus leverages
morphable priors to achieve state-of-the-art performance
through pose- and occlusion-aware supervision, success-
fully morphing objects while maintaining consistent corre-
spondences across instances with varying shapes and poses.
We also show that approaches relying only on 2D supervi-
sion remain insufficient. Our benchmark provides a foun-
dation for expanding correspondence learning toward em-
bodied robotics applications, where reasoning about full 3D
object geometry, including occluded parts, is essential.
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Monocular Category-Level 3D Correspondence via Morphable Priors

Supplementary Material

A. Additional results

In addition to the results reported in the main paper, we provide in Tab. A3 the complete set of quantitative results for
our method, covering all categories of HouseCorr3D. These extended results complement the main text by offering a more
fine-grained view of per-class performance. Importantly, we observe the same overall trends as in the main paper. This
consistency arises because the categories highlighted in the main figures were chosen at random, rather than being selected
to favor particular outcomes. Thus, the additional results confirm that our observations hold uniformly across the entire
benchmark and are not biased by the choice of examples shown in the main paper.

Despite the overall robustness of our method, some limitations can be observed in challenging scenarios. A first source of
error arises from inaccurate pose estimation from [61]. Since canonical alignment is a prerequisite for predicting consistent
correspondences, pose misalignment can propagate through the pipeline and lead to incorrect predictions. A second limitation
concerns the deformation decoder. The learned deformations are constrained by both the template representation and the
distribution of training data. As a result, objects that exhibit high intra-class variability, or that contain fine-scale structures
not well captured in the template, often cannot be deformed adequately. This is especially evident for thin or elongated
extremities such as airplane wings, bottle tips, or animal legs, where the predicted deformation either underestimates the
required displacement or, in extremely rare cases, collapses the geometry entirely. Finally, the model may fail in cases
where very large non-linear deformations are required. Since the decoder is trained to interpolate within the observed shape
distribution, extrapolations to unseen structural variations remain difficult. Consequently, regions that extend far beyond the
canonical template tend to remain under-deformed, leading to visible artifacts such as truncated parts or floating geometry.
While these errors are relatively rare, they underscore the inherent trade-off between enforcing a shared canonical prior and
maintaining sufficient flexibility to capture extreme shape variations across object instances. We also provide additional
qualitative limitations in Fig. A1.

Figure A1. Qualitative Results. We illustrate some limitations qualitatively. In the first example, the pose estimation for the query object is
slightly off, resulting in wrong projections on the estimated mesh. Second, coarse estimation of the mesh results in wrong correspondence.
Third, wrong depth estimation, leads to wrong 3D correspondence estimation, despite the 2D projection is accurate.

B. Experimental details

B.1. Hyperparameters

Training Morpheus involves multiple components and multiple losses, so we draw inspiration from [36, 49, 61] for our
hyperparameter settings. Table A1 summarizes the overall training setup, loss weights, and model architectures used across
our experiments.

B.2. DINOv2

For the DINOv2 baseline, we use the ViT-S backbone initialized from the public weights. Images are resized to 4482, yielding
a 322 patch grid, and we L2-normalize the resulting feature map before computing correspondences.
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Training Hyperparameters
Optimizer Adam
Batch Size 30
Batch Accumulation 2
Learning Rate 1.0× 10−3

Epsilon 1.0× 10−8

Beta 1 0.9
Beta 2 0.999
Weight Decay 0
Learning Rate Scheduler Exponential LR
Warmup 100
Gamma 0.98
LR Min. 1.0× 10−4

Loss Weights
Mesh Chamfer Distance (λCD) 0.1
Mask Mean Square Error (λm) 2
Mask Distance Transform (λmdt) 200
SDF Regularization (λsdf ) 0.01
Deformation Regularization (λdef ) 0.075
Smoothness Regularization (λsmooth) 0.0075

Template Architecture
Type Coordinate MLP
Layers 5
Hidden Dimension 256
Out Dimension 1
DMTet Resolution 16

Deformation Architecture
Backbone DINOv2 ViT-S
Deformation Encoder ResNet Blocks
ResNet Blocks 4
ResNet Block Type bottleneck
Out Dimensions [256, 256, 256, 256]
Strides [2, 2, 2, 2]
Pre-Upsampling [1, 1, 1]
Deformation Decoder Coordinate MLP
Layers 5
Hidden Dimension 256
Out Dimension 6

Table A1. Full-width hyperparameter overview including training setup, loss weights, and model architectures.

B.3. NOCS
We closely follow the procedure introduced by Wang et al. [45] to evaluate the NOCS baseline on HouseCorr3D. We use
the same ResNet50 [14] backbone together with Feature Pyramid Network (FPN). For every training image we generate
ground-truth NOCS targets by normalizing each object mesh to the unit cube and encoding the resulting XYZ coordinates
directly as RGB values. Using the camera poses provided in Omni6DPose[61], we then render these NOCS maps so that
every pixel stores its canonical 3D coordinate. Training uses the official ground-truth instance masks, category labels, and
depth maps from Omni6DPose to supervise the model and to restrict supervision to the visible object regions. At inference
time we predict a dense NOCS map for each input image. For 2D correspondence queries, we read the predicted canonical
coordinate at the query pixel and find the nearest neighbor in NOCS space among all image pixels in the target image; the
location of that neighbor serves as the correspondence prediction. For 3D correspondence queries, given a 3D query point xq

in the source image, we first find the corresponding canonical coordinate by projecting xq into the source image and reading
the predicted NOCS value at that pixel. We then find the nearest neighbor in NOCS space among all pixels in the target
image; we back-project that pixel using the depth map to obtain the predicted 3D correspondence xt.

B.4. MagicPony
Following MagicPony [49], we sample 5K images, extract object features using the provided modal masks, and apply PCA to
reduce the feature dimension to 16. We replace the original DINOv1 encoder with DINOv2, which improves category-level
2D correspondence estimation [60]. Due to memory constraints, each category-level model is trained for 120 epochs with a
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grid resolution of 128, whereas the original implementation switches to resolution 256 for the final 30 epochs. Because our
evaluation emphasizes correspondence accuracy within a 10% object-size tolerance rather than fine-grained reconstruction,
sub-percent shifts (e.g., < 0.5%) are negligible.

C. Additional dataset statistics
We rely exclusively on the realistic synthetic subset of Omni6DPose [61]. Preliminary experiments showed that the real
captures provide limited diversity: most categories contain at most two unique object instances, scenes are often repeated
across long video sequences, and overall variation in layout is low. As a result, the number of reliable correspondences that
can be established from the real subset is severely restricted.

In contrast, the synthetic pipeline offers large-scale variation in both object instances and scene composition. This diversity
is crucial for learning robust 2D–3D semantic correspondences across categories. Moreover, the synthetic subset has been
designed to closely mimic real-world conditions, with natural lighting, cluttered environments, and realistic occlusions.
This ensures that models trained on our benchmark generalize well beyond simplified synthetic settings. Therefore, our
benchmark focuses on the high-quality synthetic subset, which provides both realism and sufficient coverage for large-
scale correspondence evaluation. In total, HouseCorr3D contains 178k images across 280 unique object instances from 50
categories, making it the first large-scale dataset with dense, semantically consistent 2D–3D correspondences for everyday
objects. To better illustrate the scope of the annotations, Tab. A4 reports the number of annotated keypoints for each category,
highlighting differences in semantic coverage across classes. In Fig. A2, we further visualize the total number of keypoints
annotated per class and indicate, through color coding, how many object instances were annotated. Together, these results
offer a clear overview of the dataset’s scale and diversity and underscore its suitability as a benchmark for category-level 3D
correspondence.
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Figure A2. Total number of annotated keypoints per class. Different object instances are shown in different colors. Note. The number
of keypoints per instance can vary within a class because instances often differ in shape and semantics. For example, two toy plane
instances have fewer keypoints because they are helicopters, and roughly half of the toy train instances are high-speed bullet trains
while the others are conventional locomotives.

D. Mesh annotation process
For mesh annotation, we convert each CAD mesh into a point cloud to facilitate visual inspection and interaction. Annota-
tors are then provided with up to 20 3D keypoints per category that must be placed consistently across all instances. These
keypoints are chosen to be semantically meaningful and geometrically well-defined: rather than marking the center of a
continuous surface, annotators focus on distinctive structures such as corners, edges, wheel centers, handles, or wing tips.
This strategy ensures that annotated points are both discriminative and reliably transferable across different instances of a
category. To guarantee annotation quality, each instance was independently annotated by two annotators. The two annotation
sets are then automatically merged using a correspondence-based algorithm. First, keypoints from both annotators are trans-
formed to an object-centric coordinate frame and mutual nearest-neighbor correspondences are computed across all instances
of a category. Matched keypoints are either classified as close (within 5% of the object’s bounding-box diagonal) or distant.
Based on matching patterns across instances, keypoints are automatically accepted (pairs are always matched and close,
AUTO ACCEPT), split into separate entries (pairs are always matched but distant, indicating semantic disagreement between
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annotators, AUTO SPLIT), or kept as-is (never matched, AUTO UNMATCHED). Ambiguous cases (i.e., all remaining key-
points not falling in any previous categories), which includes keypoints with inconsistent matching behavior or mixed prox-
imity patterns, are resolved through an interactive post-merging step, where both annotators visualize correspondences across
multiple instances and manually and mutually decide whether to accept a single keypoint (e.g., MANUAL ACCEPT + SET1 &
REJECT for the second keypoint), merge keypoints (i.e., use the mean of both keypoints, MANUAL ACCEPT + MEAN), split
keypoints (i.e., create separate keypoints and keep both when they refer to different semantic concepts, MANUAL ACCEPT +
SET1&SET2), or reject both keypoint (REJECT). We summarize the final merged status and manual decision distributions
in Tab. A2. This systematic merging procedure reduces noise and ensures high-quality annotations consistent across the
dataset. In addition, the reference mesh for each category was annotated first, and subsequent instances were aligned to this
reference using a 3D interface. This alignment step further reduced ambiguities and ensured that annotations across different
instances adhered to the same semantic standard. Overall, this process yields a compact yet semantically robust set of 3D
keypoints that serve as the foundation for our correspondence benchmark.

Table A2. Final merged status (left) and manually accepted decision (right) distributions over all categories.

Status Percentage

AUTO ACCEPT 23.1%
AUTO SPLIT 16.6%
AUTO UNMATCHED 24.9%
MANUAL ACCEPT 21.9%
REJECT 13.4%

Decision Percentage

MEAN 48.2%
SET1 24.5%
SET2 27.3%

Note. Most rejected keypoints occur when only one annotator set (SET1 or SET2) is retained during manual validation. This happens when
both sets target the same semantic zones, but one of them is judged to be of relative higher quality and the other is therefore discarded.

E. Additional Losses
Learning accurate correspondences requires not only supervision on visible matches but also strong geometric regularization
to stabilize training and enforce plausible shapes. To this end, we use additional loss terms (Eqs. (A1) to (A3)) that impose
additional constraints to the learned deformation and shape representation.

Eikonal loss. To enforce the signed distance function (SDF) property, we adopt the Eikonal regularizer [10], which en-
courages unit-norm gradients of the implicit function. Because gradients are only reliable near the extracted surface, we
additionally sample auxiliary points Psdf throughout the canonical space:

Lsdf (M, x) =
(
∥∇ϕsdf (x)∥2 − 1

)2
, x ∈ Psdf . (A1)

This prevents degenerate fields and stabilizes the geometry across unseen regions.

Deformation regularizer. To avoid arbitrary or excessive deformations, we penalize ℓ2 deviations of vertices from the
category template:

Ldef (M,Mdef , I) =
1

|V|
∑
v∈V

∥∥v − ϕa(v, l)
∥∥2, with l = ψl(I) (A2)

This term encourages learned shapes to remain close to the canonical prototype while still allowing instance-specific variation.

Smoothness regularizer. Finally, we promote locally coherent deformations by enforcing smooth displacements across
neighboring vertices, following [62]:

Lsmooth(M,Mdef , I) =
1

|E|
∑
i,j∈E

∥∥[i− ϕa(i, ψl(I))]− [j − ϕa(j, ψl(I))]
∥∥
2

∥i− j∥2
. (A3)

This regularizer suppresses spurious local distortions while still allowing non-rigid articulation.
Together, these terms ensure that the learned representation respects the SDF property, stays anchored to a canonical

template, and maintains smooth, realistic deformations.
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(a) Overview of the annotation tool. Annotated keypoints are displayed directly on the point cloud, allowing annotators to verify their placement.

(b) All annotated keypoints and their correspondences for the dinosaur category are visualized, enabling inspection of annotation quality.

Figure A3. Annotation process illustration. Using our interactive 3D interface, annotators align 5 instances per category and assign 3D
keypoints to their respective meshes. We also visualize the resulting correspondences to assess their quality and consistency.

Figure A4. HueGrid visualization. We integrate 3D-based color encoding with a structured checkerboard pattern which allows to jointly
highlight absolute correspondences and local deformations. We show the HueGrid projection for three example objects.

F. HueGrid Visualization

To visualize dense correspondences, we introduce the HueGrid representation. Classical 3D-aware coloring schemes such
as NOCS [45] (widely adopted in [17, 30, 35, 64]) encode XYZ coordinates directly as RGB values, but this makes local
distortions hard to perceive given the continuous nature of the color mapping. Conversely, Shtedritski et al. [35] texture
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Figure A5. Modal vs. Amodal Correspondences. Choosing the 3D camera space as evaluation space, means we can also evaluate amodal
correspondences. Here we show the three types of amodal correspondences in lightgreen, a) self-occlusion, b) occlusion from another
object, and c) outside of the camera frustum. Not that it is sufficient if a point is occluded in either the query or the target space.

meshes with a colored checkerboard pattern, which clearly reveals local stretching because square cells deform into visible
shapes once projected into the image.

HueGrid combines the best of both ideas: we keep the informative 3D-based color coding of NOCS while superimposing
the structured checkerboard cues from Shtedritski et al. [35]. The resulting visualization simultaneously conveys absolute cor-
respondence information and local geometric deformation. The visualization is illustrated in Fig. A4 for three representative
mesh examples. We will also provide the code to generate HueGrid visualizations for all meshes and point clouds.

G. Discussion about correspondence evaluation
Modal vs. Amodal masks. We distinguish between modal and amodal correspondences in 3D, see Fig. A5. Modal corre-
spondences are defined only on the subset of surface points that are visible from a given viewpoint, mapping observed 2D
pixels to their canonical surface counterparts. In contrast, amodal correspondences extend this mapping to the full object
surface, including parts that may be (self-)occluded. Modal evaluation reflects how well a method can align observed ge-
ometry with a canonical template and is directly comparable to tasks such as 2D keypoint transfer. Amodal evaluation goes
further: it measures whether a model has learned a complete category-level shape prior that can predict correspondences
even for unobserved surfaces. This distinction is critical for downstream tasks that require holistic understanding, such as
shape completion, scene reasoning, or part-level manipulation. In 2D, we are restricted to image pixels, which by definition
correspond only to visible regions; there is no ground-truth notion of a pixel for an occluded surface. In 3D, however, we can
explicitly represent the canonical surface C and predict both visible and occluded points across poses. This makes it possible
to evaluate amodal correspondences, providing a stronger test of a model’s ability to infer complete, semantically consistent
shapes across instances.

Evaluation under symmetry. Many everyday objects exhibit geometric symmetries that introduce fundamental ambigui-
ties in correspondence. To the best of our knowledge, existing semantic correspondence benchmarks have not addressed sym-
metries, as they operate purely in 2D where such geometric constraints are difficult to define. By leveraging 3D annotations,
HouseCorr3D explicitly handles reflective and rotational symmetries, ensuring that geometrically equivalent predictions are
not unfairly penalized, see Fig. A6.

Reflective symmetry is invariance under mirror reflection across a plane. For each target point x we obtain multiple correct
mirrored solutions x′ and treat them equivalent by choosing the one that is closest to the predicted point x̂

erefl-sym(x, x̂) = min
x′

{∥x′ − x̂∥}.

Rotational symmetry is defined as invariance under rotations about a fixed axis. Given a predicted point x̂ and rotation
Ra(θ) about axis a, the correspondence error is

erot-sym(x, x̂) = min
θ

∥Ra(θ)x− x̂∥,
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Figure A6. Evaluation under symmetry. Illustration of two correct correspondence estimations with explicit symmetries. First, in A), we
show two possible predictions under reflective symmetry. Despite flipping the pillow, the correspondences are correct. Second, in B), we
show two possible predictions under rotational symmetry. We visualize the rotation axis in yellow.

with θ ∈ [0, 2π). Geometrically, this equals the distance from x̂ to the circular orbit of x around the symmetry axis.
With these symmetry-aware definitions, predictions are correct if they align with any symmetric equivalent: rotationally

symmetric points are judged by distance to their orbit, and mirror-symmetric points by distance to the closer counterpart.
This yields a fair metric that respects the inherent geometric ambiguities in real-world objects and enables robust evaluation
of category-level correspondence methods.

Reproducibility and LLM assistance
To ensure full reproducibility of our work, we will release all code and data used in this paper. The complete processing
pipeline, including scripts for dataset preparation and annotation generation, will be made publicly available on GitHub. Our
training and inference code for the proposed model will be provided in the same repository, together with configuration files
and instructions for reproducing all experiments reported in the paper. The dataset itself, including the annotated 3D meshes
and projected 2D keypoints, will be released on Hugging Face for easy access and long-term hosting. In addition, we will
provide helper functions to compute the 3D correspondence metrics introduced in this paper, ensuring that results can be
evaluated in a consistent and standardized manner.

We used large language models (LLMs) in a limited capacity to assist with the writing of this paper. Specifically, LLMs
were employed only to (i) improve sentence clarity and conciseness, and (ii) condense overly lengthy paragraphs. All
technical contributions — including the method design, experimental setup, results, and analyses — are entirely our own
work.
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Table A3. Category-level comparison across all 50 classes for Morpheus and the baselines. Beyond showcasing which categories are almost
solved versus still challenging, the table reveals how object variability drives performance: classes with low deformation and consistent
shapes (e.g., shampoo, corn) are nearly saturated, whereas highly diverse toy categories (e.g., toy car, toy animal) remain difficult.

mean backpack book bottle box bread coconut conch corn dinosaur dish doll egg eraser
facial
cream

flower
pot

glasses
case

2D
DINOv2 22.9 7.0 14.9 25.9 41.1 14.0 30.9 15.8 30.8 16.4 8.6 5.0 12.7 64.4 11.7 9.5 44.2
MagicPony2D 15.7 6.4 7.1 36.9 41.8 22.9 22.1 5.0 21.8 7.4 10.2 5.6 11.2 36.9 14.4 9.7 38.1
NOCS 26.7 27.2 28.4 35.8 49.7 23.7 59.3 2.4 57.0 8.0 3.0 6.7 1.5 35.1 12.1 4.5 55.2
GenPose++ (GP) 36.3 37.0 43.2 42.8 31.1 30.0 70.4 12.2 73.6 13.3 13.2 4.3 11.6 40.8 27.3 16.0 64.3
MagicPony+GP 10.7 4.8 4.5 20.2 21.8 22.1 32.0 1.9 16.8 8.1 9.1 6.9 8.2 21.2 12.0 8.1 13.6
Morpheus 41.2 40.9 46.2 47.2 61.8 36.5 73.3 16.0 75.2 15.1 15.6 8.5 15.4 46.5 26.7 18.9 73.1
Morpheus w/o Def. 39.1 39.9 46.9 46.3 34.6 34.2 73.3 13.2 74.7 14.8 15.2 5.0 16.1 47.4 26.6 19.1 72.5

3D
GenPose++ (GP) 34.3 18.8 36.9 62.8 11.1 27.5 77.0 19.6 89.8 7.8 31.8 2.8 19.5 28.0 27.4 28.0 57.2
MagicPony+GP 7.1 1.2 1.0 30.7 4.6 10.8 29.8 1.3 18.4 1.8 16.3 2.8 6.7 5.8 14.8 13.0 4.2
Morpheus 41.5 23.7 42.5 73.2 42.9 39.2 85.3 26.3 91.2 6.9 46.7 5.0 22.1 34.1 46.2 39.7 68.5
Morpheus w/o Def. 38.4 22.7 42.6 71.0 10.4 35.0 85.1 26.0 91.6 8.4 42.4 3.5 22.1 35.1 28.0 38.9 67.8

3D Modal
DINOv2+D 24.4 5.7 18.0 29.0 27.0 16.4 52.9 16.7 40.8 8.1 15.3 2.6 10.4 39.6 31.3 28.7 37.4
MagicPony2D+D 14.0 3.9 4.8 32.2 23.1 22.7 27.2 10.6 24.0 4.7 10.9 0.0 13.9 20.8 26.3 21.3 26.6
NOCS+D 26.4 6.5 31.9 58.7 42.3 24.0 69.9 2.7 75.2 6.5 34.9 1.9 6.6 18.9 26.4 22.5 51.2
GenPose++ (GP) 37.0 22.9 43.2 60.0 14.6 27.9 84.6 14.3 92.5 11.6 30.4 2.6 19.8 30.2 39.3 33.9 59.4
MagicPony+GP 7.5 2.5 2.3 35.8 5.3 14.7 1.5 3.6 20.4 1.8 10.6 2.2 9.6 5.5 23.8 17.5 3.9
Morpheus 43.7 26.0 48.1 71.3 59.6 38.8 91.2 24.3 94.1 12.2 51.9 2.6 23.6 37.8 45.1 40.0 71.0
Morpheus w/o Def. 40.2 25.2 48.5 70.2 14.6 35.2 91.2 24.3 94.4 14.5 43.7 2.6 23.6 37.2 38.8 35.9 70.1

3D Amodal
GenPose++ (GP) 32.9 17.1 35.2 64.4 9.4 27.3 69.5 21.9 88.2 6.8 32.1 2.9 19.3 27.3 22.0 26.5 56.7
MagicPony+GP 7.1 0.7 0.6 27.3 4.3 9.1 58.1 0.4 17.1 1.9 17.6 3.0 4.9 5.9 10.8 11.8 4.2
Morpheus 40.8 22.8 41.1 74.2 35.1 39.4 79.4 27.2 89.5 5.4 45.5 5.8 21.1 33.0 46.7 39.6 67.8
Morpheus w/o Def. 37.8 21.6 41.1 71.5 8.4 34.9 79.0 26.8 89.9 6.8 42.2 3.9 21.1 34.4 23.0 39.7 67.2

mean
hair

dryer
ham-

burger
hand
cream handbag knife lemon light

lotus
root mango

mango-
steen

medicine
bottle mouse mug orange pillow

pome-
granate

power
strip

2D
DINOv2 22.9 19.2 18.0 30.0 16.9 15.6 31.7 16.0 28.5 23.9 26.3 17.6 17.9 13.2 33.3 39.0 21.8 22.7
MagicPony2D 15.7 6.8 36.8 19.7 8.2 13.0 11.1 17.4 21.1 11.8 12.8 13.5 6.4 7.0 11.1 22.2 12.7 13.1
NOCS 26.7 21.9 67.3 43.2 17.7 11.6 20.3 19.3 28.0 28.0 3.0 24.9 53.4 26.5 24.6 47.7 9.3 27.8
GenPose++ (GP) 36.3 27.0 76.4 48.5 34.0 26.8 29.4 37.0 39.9 35.4 27.9 31.7 58.9 37.0 30.6 59.3 30.2 37.0
MagicPony+GP 10.7 4.7 55.7 11.2 7.5 9.0 3.3 12.1 8.6 5.1 15.4 9.6 5.2 5.1 15.8 22.7 7.5 8.6
Morpheus 41.2 35.1 79.3 55.8 31.0 30.7 33.9 37.6 39.7 43.4 21.8 39.1 63.6 43.3 38.9 65.2 26.6 44.5
Morpheus w/o Def. 39.1 28.8 80.5 54.3 36.7 29.3 34.4 40.5 40.3 43.8 21.0 36.2 61.2 39.6 35.5 63.8 24.2 41.2

3D
GenPose++ (GP) 34.3 19.6 74.8 44.0 18.0 28.0 23.3 36.5 52.7 21.5 42.6 35.9 51.4 20.2 40.8 41.5 38.1 31.6
MagicPony+GP 7.1 0.3 50.5 2.7 1.2 5.0 0.6 8.4 9.3 0.7 19.7 8.3 2.0 0.7 14.7 7.9 4.8 2.6
Morpheus 41.5 27.4 81.1 50.2 16.3 32.4 32.8 45.7 53.5 30.3 38.0 56.1 59.0 24.4 54.3 51.5 36.9 41.5
Morpheus w/o Def. 38.4 19.5 82.3 48.8 21.1 30.4 33.3 45.7 52.8 27.6 39.6 48.4 56.1 21.5 50.6 48.5 34.1 37.3

3D Modal
DINOv2+D 24.4 18.4 36.4 24.5 11.2 16.9 25.6 34.3 28.0 23.4 24.7 45.8 17.7 4.9 57.6 24.3 33.1 24.7
MagicPony2D+D 14.0 5.8 40.9 13.1 4.1 13.5 7.8 24.9 19.3 9.3 12.3 21.5 6.1 1.4 11.1 16.5 23.1 8.6
NOCS+D 26.4 14.4 60.1 37.2 2.5 15.9 19.0 43.4 40.4 17.6 18.2 50.7 48.8 12.0 27.4 42.7 9.2 28.4
GenPose++ (GP) 37.0 21.0 83.2 45.6 14.9 32.6 24.4 42.4 57.0 19.6 38.3 40.2 59.1 30.4 34.6 53.5 37.3 36.7
MagicPony+GP 7.5 0.2 54.1 3.2 1.6 6.8 1.1 12.7 14.0 1.8 27.3 4.3 3.0 0.8 5.0 8.9 6.3 3.4
Morpheus 43.7 29.1 81.4 53.4 14.0 33.4 36.7 62.3 57.0 34.6 33.3 63.6 64.8 33.1 41.5 59.7 26.3 46.6
Morpheus w/o Def. 40.2 23.4 83.2 51.3 16.1 31.8 37.8 55.1 56.4 29.9 32.7 55.1 61.3 30.1 42.4 55.0 24.6 41.8

3D Amodal
GenPose++ (GP) 32.9 19.4 66.4 43.4 19.3 23.3 22.2 34.6 49.8 22.6 45.8 33.7 42.1 16.6 45.6 37.3 38.8 29.4
MagicPony+GP 7.1 0.4 46.8 2.6 1.0 3.1 0.0 7.1 6.1 0.0 14.4 10.0 0.8 0.7 22.1 7.6 3.2 2.3
Morpheus 40.8 27.1 80.9 49.1 17.3 31.3 28.9 40.4 51.2 27.9 41.6 52.2 52.0 21.4 64.3 48.7 46.3 39.4
Morpheus w/o Def. 37.8 18.8 81.4 47.9 23.1 29.0 28.9 42.7 50.4 26.3 44.9 44.9 49.8 18.5 57.0 46.3 42.5 35.3

mean remote sausage shampoo shoe shrimp teapot
tooth
brush

tooth
paste

toy
animal

toy
boat

toy
bus

toy
car

toy
m’bike

toy
plane

toy
train

toy
truck wallet

2D
DINOv2 22.9 19.1 35.2 56.5 30.0 23.0 13.1 37.7 41.1 14.9 17.1 13.3 9.6 10.6 15.2 14.5 13.0 25.4
MagicPony2D 15.7 15.2 20.4 49.0 13.8 9.5 8.7 29.6 8.1 8.8 7.2 5.1 9.1 7.7 11.7 8.5 12.5
NOCS 26.7 27.7 15.0 69.7 45.2 9.5 21.7 52.2 55.9 0.9 14.0 42.6 5.5 16.3 20.7 27.3 28.5 28.2
GenPose++ (GP) 36.3 41.2 25.0 90.8 62.6 17.5 23.1 62.2 65.4 6.5 20.5 50.2 7.1 26.7 28.8 34.4 41.5 35.8
MagicPony+GP 10.7 4.5 2.3 22.6 11.9 4.3 3.9 0.4 11.9 4.7 4.1 4.2 3.8 8.1 7.2 5.7 7.7 11.5
Morpheus 41.2 45.6 31.0 89.7 62.9 21.4 37.3 68.3 68.9 8.9 28.1 57.1 9.2 31.3 34.8 43.3 47.1 39.6
Morpheus w/o Def. 39.1 44.9 32.4 91.8 59.1 18.2 25.0 68.3 68.5 7.9 22.5 51.8 6.7 29.5 32.0 41.8 44.9 38.1

3D
GenPose++ (GP) 34.3 40.9 24.1 90.1 62.9 12.3 16.0 67.2 65.2 1.6 14.4 37.1 2.2 17.9 18.2 23.6 30.7 24.9
MagicPony+GP 7.1 1.7 1.9 19.5 7.2 1.4 1.0 0.4 4.0 2.2 0.9 0.9 0.7 2.2 2.1 1.5 3.2 2.8
Morpheus 41.5 44.7 31.0 92.8 62.9 16.4 26.4 72.8 69.4 5.4 21.0 47.9 3.3 22.5 26.0 31.5 37.3 31.1
Morpheus w/o Def. 38.4 44.2 31.9 91.4 57.6 15.5 15.3 73.0 68.5 1.6 16.5 41.3 1.9 19.8 21.6 30.2 33.5 30.5

3D Modal
DINOv2+D 24.4 15.4 30.6 52.1 30.0 14.0 11.4 51.0 41.4 14.8 7.5 14.4 11.6 11.0 9.2 11.6 20.2 20.6
MagicPony2D+D 14.0 12.0 22.2 31.5 11.5 7.4 12.9 29.2 4.9 2.7 4.7 2.7 10.1 3.1 5.0 8.8 6.9
NOCS+D 26.4 28.7 13.0 71.4 39.0 5.5 12.0 66.8 60.6 1.8 4.5 34.6 0.3 7.4 13.5 25.2 14.7 16.8
GenPose++ (GP) 37.0 45.0 28.7 92.5 64.6 11.7 21.5 80.7 67.4 2.5 12.9 38.5 2.4 27.5 14.9 32.9 22.8 25.2
MagicPony+GP 7.5 2.0 0.9 21.9 11.9 0.8 1.0 0.4 3.0 1.5 1.1 0.3 1.2 4.1 2.1 1.1 3.4 4.9
Morpheus 43.7 49.7 33.3 87.0 58.5 17.5 31.5 82.3 72.9 3.7 19.9 49.2 3.1 33.8 23.6 41.2 29.8 30.5
Morpheus w/o Def. 40.2 48.2 33.3 87.7 50.8 14.4 16.8 82.8 71.9 1.2 17.2 44.5 1.0 27.8 16.8 40.9 25.4 30.5

3D Amodal
GenPose++ (GP) 32.9 39.2 19.4 87.7 61.9 12.5 13.7 57.9 64.4 1.4 14.8 36.7 2.1 15.0 19.2 20.1 34.0 24.8
MagicPony+GP 7.1 1.6 2.8 17.1 3.8 1.7 1.0 0.5 4.4 2.4 0.9 1.1 0.6 1.6 2.1 1.6 3.1 1.6
Morpheus 40.8 42.6 28.7 98.6 65.7 16.0 24.3 66.3 68.1 5.9 21.3 47.5 3.3 19.0 26.7 27.8 40.5 31.4
Morpheus w/o Def. 37.8 42.5 30.6 95.2 61.9 15.9 14.7 66.3 67.3 1.7 16.3 40.3 2.1 17.3 23.1 26.2 36.9 30.6
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Category Number of keypoints

backpack 16
book 8
bottle 5
box 14
bread 6
coconut 2
conch 7
corn 3
dinosaur 18
dish 9
doll 11
egg 3
eraser 10
facial cream 12
flower pot 10
glasses case 16
hair dryer 14
hamburger 2
hand cream 7
handbag 15
knife 6
lemon 2
light 18
lotus root 3
mango 3
mangosteen 4
medicine bottle 6
mouse 7
mug 14
orange 3
pillow 6
pomegranate 4
power strip 10
remote control 11
sausage 2
shampoo 2
shoe 12
shrimp 8
teapot 13
tooth brush 8
tooth paste 7
toy animals 11
toy boat 8
toy bus 18
toy car 8
toy motorcycle 19
toy plane 13
toy train 10
toy truck 10
wallet 9

Table A4. Maximum number of annotated keypoints observed for each category.
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Figure A7. Full keypoints annotation overview of HouseCorr3D (part 1 of 3)
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Figure A7. Full keypoints annotation overview of HouseCorr3D (part 2 of 3)
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Figure A7. Full keypoints annotation overview of HouseCorr3D (part 3 of 3)
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