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Abstract

Deep learning algorithms for object classification and 3D
object pose estimation lack robustness to out-of-distribution
factors such as synthetic stimuli, changes in weather con-
ditions, and partial occlusion. Recently, a class of Neural
Mesh Models have been developed where objects are repre-
sented in terms of 3D meshes with learned features at the
vertices. These models have shown robustness in small-scale
settings, involving 10 objects, but it is unclear that they can
be scaled up to 100s of object classes. The main problem is
that their training involves contrastive learning among the
vertices of all object classes, which scales quadratically with
the number of classes. We present a strategy which exploits
the compositionality of the objects, i.e. the independence of
the feature vectors of the vertices, which greatly reduces the
training time while also improving the performance of the
algorithms. We first restructure the per-vertex contrastive
learning into contrasting within class and between classes.
Then we propose a process that dynamically decouples the
contrast between classes which are rarely confused, and
enhances the contrast between the vertices of classes that
are most confused. Our large-scale 3D compositional model
not only achieves state-of-the-art performance on the task of
predicting classification and pose estimation simultaneously,
surpassing Neural Mesh Models and standard DNNs, but
is also more robust to out-of-distribution testing including
occlusion, weather conditions, synthetic data, and general-
ization to unknown classes.

1. Introduction

Large-scale training images and annotations have signif-
icantly advanced deep learning, leading to remarkable
achievements in various computer vision tasks, including
object classification, detection, and pose estimation [19].
Cognitive scientists, however, suggest that human vision is
more sophisticated and when classifying objects also recog-
nizes their 3D structure including their shape and pose in a
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unified way using compositional representations [2, 3, 20].
We hypothesize that endowing computer vision models with
3D representations will improve their performance, partic-
ularly in challenging out-of-distribution (OOD) scenarios,
including domain shifts due to changes in weather, occlu-
sions, and unfamiliar viewpoints, for which humans show
big robustness [40], but where standard deep network models
struggle [5, 16, 40]. The key insight is that the 3D structure
of objects rarely varies in most OOD settings while deep
network features are much more variable.

One promising avenue involves neural mesh models
[11, 14, 21, 30, 31]. These models are compositional in
the sense that they represent objects by 3D meshes of ver-
tices which are associated with learned vertex features. The
vertex features are computed by a DNN feature extractor,
CNN or Transformer, which are learned to be independent
of each other and be invariant to object viewpoint and in-
stance. Using these compositional models, recent works
demonstrated superior performance in generalizing to OOD
scenarios for tasks such as image classification[11], 3D pose
estimation [14, 31] and 6D pose estimation [21].

However, to date, these neural mesh models have only
been demonstrated on small datasets, such as Pascal-
3D+ [36] (12 object classes) and OOD-CV[38] (10 object
classes), for two reasons. Firstly, because they require
datasets with accurate 3D annotations for learning. Sec-
ondly, because their learning algorithms scale badly. For
example, their contrastive learning includes every vertex
from every object class which scales quadratically.

This raises the challenges we address in this work: (I) Can
neural mesh models be scaled to a large number of object
classes efficiently? (II) How will they perform compared to
conventional neural networks in independent and identically
distributed (IID) testing? (III) Most importantly, will they
retain their important robustness properties, e.g., robustness
to out-of-distribution (OOD) data, when scaled up?

In this work, we reformulate neural mesh models to allow
scaling up to a large number (i.e., 188) of object classes
efficiently exploiting the recent availability of 3D annotated
data [22, 23], We will refer to it as 3D compositional models
in the following sections.



Figure 1. Our model (3D-ComptNets) is able to perform classifica-
tion and 3D pose estimation simultaneously while being robust to
IID and various OOD scenarios (different scales for each axis).

Our strategy is to train 3D compositional models with
a new algorithm that exploits the compositionality of our
objects in terms of their vertices. We demonstrated that
only a small portion of the huge number of contrastive pairs
is required to optimize the model to achieve strong perfor-
mance. We first decoupled the full vertex-level contrasting
into in-class contrasting and cross-class contrasting for effi-
ciency. Additionally, our algorithm dynamically decouples
the contrast between classes that are rarely confused and
emphasizes the contrast between the most confused classes.
This is similar to classic hard-negative mining [12, 33, 35],
differing in that we exploit the compositional structure of
our models in a supervised learning manner. These together
greatly reduce the number of vertices of the object that need
to be contrasted, allowing for a greatly reduced computation.

Concisely, our contributions are as follows:
1. We extend 3D-CompNets to an order of magnitude more

object classes than previous studies and show they out-
perform conventional deep networks for both object clas-
sification and 3D pose estimation in a unified manner. By
comparison, previous studies of 3D-CompNets showed
no improvement over conventional deep networks on IID
data.

2. We refactor the per-vertex contrastive learning in 3D-
CompNets into two levels: in-class and cross-class con-
trasting, to largely improve learning efficiency.

3. We advance the inter-class contrastive by dynamically
decomposing object classes into subgroups and apply
dynamic weights on the contrastive loss between classes,
enabling more efficient and effective model optimization.

4. We further demonstrate that our model shows robust gen-
eralization capabilities on OOD data including occlusion,
image corruption, real-to-synthetic and unknown cate-
gories.

Figure 2. The NOVUM method typically learns an average of 1000
vertex features per class, while both 3D-CompNets and NOVUM
500 learn only a subset of 500 vertex features. Moreover, with our
efficient designs, 3D-CompNets requires 7 times less training time
compared to the original NOVUM.

2. Related Work

Robust Classification and Pose Estimation. Deep Net-
works have been shown to be non-robust [18, 26, 27] to
simple nuisances in tasks like image classification [8–10]
and 3D pose estimation [38]. Nuisances like partial occlu-
sion, weather, additive noise, etc. may not have much effect
on human visual capabilities however can completely derail
deep neural networks outputs. A convincing theory attributes
this fragility to lack of 3D compositional knowledge in these
models which humans possess [14]. Methods like data aug-
mentations, test time adaptation, noise addition, input mask-
ing, etc. have been proposed to make neural models more
robust with varying but unsatisfactory levels of success with
many arguing that we would need a different architectural
approach may be required [17, 32] which incorporates some
3D object knowledge in the models.

Robust Neural Compositional Models. It refers to a
family of 2D [13, 17, 32] and 3D models [11, 14, 31] who
have shown to be robust to out-of-distribution nuisances
like partial occlusion [17, 30], real and synthetic corrup-
tions [11, 13, 14] relative to conventional deep networks
and have been utilized to perform robust image classifi-
cation [11, 17], 3D and 6D pose estimation [21, 30, 31],
amodal segmentation [28] and unsupervised domain adap-
tation [13, 14]. These models focus on learning object-
centric, compositional neural representations and often em-
ploy the ideas of analysis-by-synthesis [37] in their appli-
cations. However, all of these previous works have only
been shown to work on small-scale datasets often due to the
computationally expensive nature of learning these composi-
tional, object-centric representations. In this work, we build
upon ideas introduced by this family of models and scale
them up efficiently to work with large datasets.

Contrastive Learning. Contrastive learning was orig-



inally developed for supervised learning [4, 6, 15, 24, 34]
but has made its biggest impact when it was modified and
applied to self-supervised learning [7] giving state of the
art results for many applications. Researchers have tried
to adapt the idea of hard-negative mining [12, 33, 35] to
improve performance and to improve efficiency but for un-
supervised or self-supervised contrastive learning the lack
of supervision makes it infeasible to adopt existing nega-
tive sampling strategies and motivates the development of
other strategies [25]. Although these strategies can be effec-
tive they are not always efficient because finding these hard
samples takes time. Our approach differs in two respects.
Firstly, it is supervised so it is easier to define a hard negative
(e.g., two objects that are easily confused with each other).
Secondly, we approximate the representation of objects by
factorized vertex features on the 3D mesh and we can di-
rectly apply contrastive learning on the vertex level with
hard negative mining.

3. Method
In this section, we first introduce the prerequisites of 3D
Compositional Networks (3D-CompNet) in subsection 3.1,
including network architecture and the object-centric 3D
neural representation. Then, we explain our motivation and
problem statement for scaling up the 3D Compositional Net-
works in subsection 3.2. We then present our core designs,
grouped neural vertex and dynamically weighted composi-
tional contrastive learning (subsection 3.3), to achieve effi-
cient scaling up of 3D-CompNet, that can be used to perform
robust image classification and 3D pose estimation simulta-
neously (subsection 3.4).

3.1. Prerequisites: 3D Compositional Network
Our model 3D-CompNet is inspired by and improved from
recent advances in Neural Mesh Models [11, 30]. In the
following, we describe the individual components of the
model in detail.

A 3D Mesh Composed of Vertex Features. We represent
objects as a 3D mesh composed of vertices uniformly placed
on the surface geometries of distinct object categories. Each
vertex also stores a corresponding feature vector, which we
refer to as vertex features. For the task of classification and
pose estimation, we find that cuboid geometries for the mesh
suffice [11, 13, 30] but more tightly defined geometries [31]
can also be used if available. Each vertex feature is linked to
a feature vector Ck ∈ RD. We define the feature set for each
category y as Cy = {Ck ∈ RD}Kk=1, and the collective set
across all categories and levels as C = {Cy}Yy=1, where Y is
the number of categories. The remainder of the image that
is not covered by the rendered object volume is represented
as background features B = {βn ∈ RD}Nb

n=1 where Nb is a
fixed hyperparameter and B is shared across all categories.

Feature Extractor. The second key component of our

model is a feature extractor Φw, with parameters w, that
processes an input image I into a feature map F = Φw(I) ∈
RD×H×W . This map holds feature vectors fi ∈ RD at each
2D lattice position i. During training, the feature extractor
and 3D representation are trained jointly. In particular, our
model learns a vertex feature Ck by optimizing its similarity
to corresponding image features fi, given the camera pose
α. We establish a simplified one-to-one correspondence of
the vertex feature Ck to the closest 2D image feature fi for
each image. For clarity, fk denotes the 2D image feature
corresponding to vertex feature Ck.

Probabilistic model. We model the probability of
generating the feature fk from vertex feature Ck as
P (fk|Ck) = cM (κ)eκfk·Ck , with Ck as the mean of each
von Mises–Fisher(vMF) distribution, both fk and Ck are unit
vectors. Similarly, the probability of fk from background
features βn is P (fk|βn) = cM (κ)eκfk·βn , where βn ∈ B.
We define the concentration parameter κ, a measure of the
spread of the distribution, as a global hyperparameter, allow-
ing us to disregard the normalization constant cM (κ) during
learning and inference.

To perform inference, we define a binary valued param-
eter zi,k such that zi,k = 1 if the feature vector fi matches
best to any Gaussian feature {Ck} ∈ Cy, and zi,k = 0 if
it matches best to a background feature. The object likeli-
hood of the extracted feature map F = Φw(I) can then be
computed as:∏
fi∈F

P (fi|zi,k) =
∏
fi∈F

P (fi|Ck)
zi,k ·max

βn∈B
P (fi|βn)

1−zi,k .

(1)
During training and inference, we aim to maximize this score
w.r.t. the latent variables.

Training. Similarly to previous approaches [11, 14, 30],
we maximize the probability P (fk|Ck) that any extracted
feature fk was generated from a vertex feature Ck instead
of any other alternatives. This is done using a supervised
contrastive learning formulation such that the likelihood that
an extracted feature fk is generated by the correct vertex fea-
ture Ck is maximized [11] w.r.t (I) distanced vertex features
of the same object (II) vertex features of other object classes
(III) background features.

3.2. Motivation and Problem Statement

Previous methods [11, 31] learned the vertex features by
mapping the image feature at each 2D location from a feature
extractor to a corresponding vertex in the 3D representation
of the object given its 3D pose. The 3D representation for
each object class is either in a coarse shape like a cuboid or
in an average prototypical shape. During training, the feature
extractor is updated using contrastive loss between vertex
features which ensures that every vertex feature is distinct
from one another.



Figure 3. An overview of 3D-CompNet. The top-green box represents the variety of objects (i.e., 188 classes) that we consider and illustrates
the grouping of Neural Vertex Features (NVF) (with arbitrary groups for illustrative purposes). The lower part illustrates the inference
pipeline. During inference, an image is first processed by the backbone into a feature map F (purple box). Then, by efficiently matching
features from F and our NVF, the object class can be predicted (top-red box), or alternatively, given the class label, pose estimation can be
performed by leveraging our volumetric representation in a render-and-compare manner (bottom-red box).

However, as we scale up to a large number of object
classes Y , we have to learn a large number of these compo-
sitional vertex representations. This is problematic for a few
reasons:
1. We need to contrast every vertex feature with every other

vertex feature of the same object class as well as all other
object classes. The calculation/floating point operations
grow with a complexity of O(Y 2).

2. During training, model optimization (using the con-
trastive loss) becomes more complex as we increase the
number of objects, due to the drastic increase in the num-
ber of vertex features.

3. During inference, we have to evaluate our data samples
against the vertex features of all other classes and an
incorrect classification inference may lead to incorrect
pose inference.

3.3. Grouped Neural Vertex with Dynamically
Weighted Compositional Contrastive Learn-
ing

In a departure from previous works, we train vertex features
in a grouped manner, what we refer to as Grouped Neu-
ral Vertex with Dynamically Weighted Compositional
Contrastive Learning.

We discover that only a small fraction of the vertex fea-
ture pairs are necessary for the contrastive learning. We
propose to decouple the full per-vertex contrasting into in-
class contrasting group and cross-class contrasting group.
The cross-class contrasting only happens between a small
amount of sampled vertex features from each object class
thus largely improving the learning efficiency.

Additionally, we apply dynamic weights on the cross-
category contrastive loss in a hard negative mining manner
to make the training process even more efficient.

This leads to a sparse and therefore much more efficient
contrastive loss calculation as we do not calculate any cor-
responding loss terms between most vertex feature pairs.
This contrastive loss formulation is termed compositional
since every vertex feature is composed of individual volume
features which roughly correspond to object keypoints. Our
grouped formulation helps us to ameliorate the drawbacks
mentioned in the previous subsection 3.2. The advantages
include
1. 95% reduction in the number of floating point operations

for every contrastive loss calculation as we only calculate
the distance between uniformly-sampled volume feature
pairs of categories with non-zero weights.

2. Faster and easier contrastive loss optimization leading to
better accuracy.

3.3.1. Grouped Neural Vertex Contrasting
If we try to trivially scale this loss to Y classes, the num-
ber of contrastive terms scales by a quadratic (Y 2) factor.
In addition, the loss landscape for optimizing over these
many parameters further lengthens and complicates the train-
ing process. However, we hypothesize that not all of these
contrastive loss terms are necessary and that we can make
learning more effective by focusing on the most confused
vertex feature pairs.

To reduce the number of contrastive pairs, we first decou-
ple the loss into an in-category loss Lin and a cross-category
loss Lcross. For each vertex feature Ck, we formulate these
two loss terms as:



Models N GFLOPS ↓ Time ↓ Accuracy
NOVUM* full 61.2 66.8h 85.7

3D-CompNets 64 4.31 (-93%) 13.3h 86.3
3D-CompNets 32 2.71 (-96%) 9.3h 86.5

Table 1. Efficiency Improvement: Our scalable 3D-CompNet
achieves up to 96% reduction in GFLOPs for contrastive loss com-
putation, and over 7× faster training speed. N refers to the sampled
features for cross-category loss computation. All backbones are
ResNet50. Bold row indicates our final model configuration.
* For full convergence, NOVUM requires 100 epochs instead of 12.

Models Backbone IID Synthetic
ResNet50 resnet50 84.8 58.2
NOVUM resnet50 85.7 68.8

3D-CompNets resnet50 86.5 69.3
DINOv2 vit-b-14 92.4 72.3

3D-CompNets vit-b-14 93.5 74.9

Table 2. Classification Results on Imagenet3D+. We evaluate our
proposed 3D-CompNets with different backbone feature extractors.
Bold row indicates our final model configuration.

Lin(k) =
P (fk|Ck)∑

Cl∈Cy

P (fk|Cl) +
∑
βn∈B

P (fk|βn)
(2)

Lcross(k) =
P (fk|Ck)

P (fk|Ck) +
∑

y′∈Y ′

∑
Cm∼S(Cy′ )

P (fk|Cm)
,

(3)
where Y ′ = Y \{y} refers to the categories excluding the
image class y.

The in-category loss Lin contrasts every vertex feature
Ck ∈ Cy with every other vertex feature {Cl} ∈ Cy of the
same category y and the background features {βn} ∈ B.

The cross-category loss Lcross, on the other hand, con-
trasts a vertex feature Ck ∈ Cy with a set of vertex features
{Cm} ∈ C′, where C′ = C\Cy, that belongs to all other
categories. In the cross-category loss, we uniformly sample
a small fixed amount N of vertex features Cm ∼ S(Cy′)
from each category y′. Experiments in Table 1 ablates the
number of vertex features sampled from each category and
we find N = 32 is enough for the cross-category contrast-
ing and shows the best classification performance. Figure 2
shows the training time reduction compared to the original
NOVUM model and the trend when scaling up with the
number of categories.

3.3.2. Dynamically Weighted Compositional Contrasting
To further improve the learning efficiency, we propose a
dynamically weighted cross-category contrastive learning.

Epoch	=	0 Epoch	=	2 Epoch	=	10

Figure 4. Illustrative example of our Dynamically Weighted Con-
trastive Learning. Weights applied on the cross-category contrastive
loss terms change dynamically during training. They are deter-
mined by the confusion matrix on the calibration data split every
two epochs.

Every 2 epochs, we validate the model’s performance on
held-out calibration data. The confusion matrix is normal-
ized over the groundtruth dimension (image class y). Us-
ing the confusion matrix from the calibration data split, we
weigh the pairwise cross-category contrastive loss term be-
tween category y and category y′ by the confusion level
between y and y′, ωy,y′ , where ωy,y′ ∈ [0, 1]. Weight ωy,y′

is set to 0 when the confusion level is below 0.05 between
object classes y and y′, which means we don’t calculate
the contrastive loss between these classes anymore. This
weighting changes dynamically throughout the training, and
in the end, will be sparse with the majority of the vertex
feature pairs not being grouped together (i.e., 0 weight), as
illustrated in Figure 4. Note that the weights in Figure 4
are shown at the category level, but in practice, they are
applied at the vertex level, since our model learns through
vertex-level contrastive learning.

We formulate the new dynamically weighted cross-
category loss as follows:

Lcross(k) =
P (fk|Ck)

P (fk|Ck) +
∑

y′∈Y ′

ωy,y′

∑
Cm∼S(Cy′ )

P (fk|Cm)
,

(4)
where ωy,y′ is the grouping weight which is calculated

using the confusion matrix between object categories of the
calibration dataset.

We compute the final loss L(C,B) for each training ex-
ample by taking the neg-logarithm and summing over all
sets of features {fk} as:

L = Lin + Lcross

= −
K∑
k

ok · (log
eκfk·Ck∑

Cl∈Cy

eκfk·Cl +
∑
βn∈B

eκfk·βn

+ log
eκfk·Ck

eκfk·Ck +
∑

y′∈Y ′

ωy,y′

∑
Cm∼S(Cy′ )

eκfk·Cm

),

(5)



Models tricycle unicycle laptop go kart RV suitcase teapot filing cabinet sofa projector Average
ResNet50 17.1 5.2 15.5 6.1 20.5 2.9 32.4 11.6 11.4 23.1 15.0
DINOv2 29.6 9.0 18.2 51.5 41.7 17.5 36.7 75.3 59.6 41.2 38.9

3D-CompNets 42.5 30.1 51.7 69.6 46.1 47.6 44.0 62.6 32.9 46.4 45.5

Table 3. Generalization performance of pose estimation on unseen object categories under accuracy π/6 ↑. Both DINOv2 and our
3D-CompNets have a ViT-B/14 backbone with the same pretraining but with different object representation methods and learning objectives.

where ok = 1 if the vertex is visible in the image and ok = 0
otherwise.
Updating vertex features and Background Features. The
vertex features and background features C and B are up-
dated after every gradient update of the feature extractor.
Following [1, 6], we use momentum update for the vertex
features:

Ck ← Ck · σ + fk · (1− σ), ∥Ck∥= 1. (6)

The background features are simply resampled from the
newest batch of training images. In particular, we remove
the oldest features in B, i.e. B = {βn}Nn=1 \ {βn}Tn=1. Next,
we sample T new background features fb from the feature
map, ensuring fb is not influenced by any vertex feature, and
update B as B ← B ∪ {fb}. Note that σ and T are model
hyperparameters.

3.4. Inference of Class Label and 3D Pose
Fast Robust Classification. Image classification is per-
formed swiftly and robustly by matching extracted features
to learned vertex features of all vertex features and back-
ground features. For each category y, we compute both
foreground P (fi|Cy) and background P (fi|B) likelihoods
across all lattice locations i on the feature map. Ignoring
object geometry simplifies this to a fast convolution opera-
tion. Image classification involves comparing average total
likelihood scores across all locations for each class.

As described in subsection 3.3, the extracted features
follow a vMF distribution. Thus we define the final classifi-
cation score of an object class y as:

Sy =
∑
fi∈F

max{ max
Ck∈Cy

fi · Ck,max
βn∈B

fi · βn}. (7)

The final category prediction is ŷ = argmaxy∈Y {Sy}.
Volume Rendering for Pose Estimation. Given the

predicted object category ŷ, we use the vertex feature Cŷ to
estimate the camera pose α leveraging the 3D geometrical
information of the neural object volumes. Following the
vMF distribution, we optimize our pose prediction α via
feature reconstruction loss [11, 14, 21, 31] during inference:

L(α) = −
∑

fi∈FG

fi · Ĉi(α)−
∑

fb∈BG

max
βn∈B

fb · βn, (8)

where FG is the set of foreground features that are covered
by the rendered neural object, i.e. those features for which
the aggregated volume density is bigger than a threshold
FG = {fi ∈ F,

∑K
k=1 ρk(rα(t)) > θ}. BG = F \ FG is

the set of features in the background. 144 evenly spaced (12
for azimuth, 4 for elevation, 3 for theta) candidate poses in
the 3D space are predefined as a set of initial poses. Pose
estimation starts from the optimal initial pose through com-
putation of the reconstruction loss (Equation 8) across pre-
defined poses, followed by gradient-based optimization to
determine the final pose prediction α̂.

4. Experimental Details
4.1. Datasets
We use two different types of data in our experiments, no-
tably real and synthetic data.

Real Data We train and evaluate our method on real data
using the ImageNet3D dataset [23], a large dataset for 3D
understanding with class and 6D pose annotation. We se-
lected a total of 188 classes with enough images for a total of
61 230 images divided in 30 630 training images and 30 600
test images. We then create occluded-Imagenet3D following
[29] by placing occlusion on both object and background
in three levels: L1, L2, and L3. In L1, around 10% of the
object and 30% of the background will be occluded, and
30%, 50% for L2 and 50%, 70% for L3. We also test on
corruptions following [8] for 4 kinds of common types of
corruptions in natural environment on level 4.

Synthetic Data For out-of-distribution testing, we also
test our method on synthetic data generated following the
approach outlined by [22]. This method enables precise
3D geometry control of diffusion models, allowing us to
obtain detailed 3D annotations for the generated images.
We generate the synthetic data for a subset of the object
classes that exist in our real dataset. Hence, we have 50
synthetic classes and 500 images for each class. We included
visualizations of the generated synthetic data in the appendix.

4.2. Baselines
We compare the performance of our approach to 2 competi-
tive standard baseline methods, ResNet50 and DINOv2 Vit-
B-14 model, for classification and 3D pose estimation. To
perform multiple tasks, ResNet50 and DINOv2 are trained
with a dual regression head: one for classification and one



Figure 5. Examples of generalization performance of our approach
on unknown object categories. The second column shows the
feature activations using the vertex features from the predicted
class. The third column show the 3D pose estimation result using
the predicted class.

for pose estimation. The classification head has an output
size of the number of object classes. Pose estimation pro-
duces an output size of 3, representing elevation, in-place
rotation, and azimuth, respectively. Each baseline uses stan-
dard cross-entropy loss and is optimized to best performance
on the validation set.

4.3. Hyper-parameter choices
The input image size is 640× 800 for ResNet50 backbone
and there are two upsampling layers to integrate the output
from the last three layers of the feature extractor. The size
of the feature map F is 1/8th of the input size. For the
ViT-B-14 backbone, the input image size is 644× 812 and
the output feature map F is 1/14th of the input size. All
output features are projected to a dimension of D = 128.

Our method is trained as described in subsection 3.3. For
each class, the corresponding vertex feature is composed of
approximately K = 500 vertex features for each object class.
To model the background, we use N = 2560 background
features. We use momentum update for the vertex features
using σ = 0.9 and sample T = 5 new background features
from the image background to update B at each gradient step.
Our model converges after only 12 epochs.

4.4. Evaluation
We evaluate all methods on two different tasks: image clas-
sification and 3D pose estimation. Image classification con-
sists of estimating the object category of the main object
in the image. The classification performance is evaluated
by accuracy over all the object categories. The 3D pose
estimation task requires predicting the azimuth, elevation,
and in-plane rotation of an object to a fixed camera. The
pose estimation error is calculated between the predicted
rotation matrix Rp and the ground truth rotation matrix Rgt

as e =
∥∥logm (

RT
p Rgt

)∥∥
F
/
√
2, following [39]. We define

the accuracy of 3D pose estimation using a threshold where
a prediction is considered correct if e < π

6 .

5. Results
In this section, we demonstrate the largely improved effi-
ciency and effectiveness of our approach (subsection 5.1)
and evaluate our approach and baselines on classification and
3D pose estimation using real-world data in in-distribution
(subsection 5.2) when scaling up with the number of ob-
jects. Additionally, we show the generalization ability of
our approach testing on unknown object categories (sub-
section 5.3). Finally, we provide results testing on out-of-
distribution (OOD) scenarios including occlusion, image
corruption and generalization to large-scale synthetic-to-real
data (subsection 5.4). Figure 1 demonstrates the overall
performance of 3D-CompNets across multiple tasks in both
in-domain and out-of-distribution scenarios.

5.1. Training Time Efficiency
We report quantitative results about the drastic decrease in
loss computations and the training time by our model in
Table 1. Our model uses 96% less loss FLOPS and con-
verges 7 times faster than NOVUM, but still outperforms it
and other standard neural networks thanks to our simple yet
novel training methodology changes. Particularly, our model
can converge with only 12 training epochs, and we can out-
perform NOVUM performances which only converges after
100 epochs.

Also, the training time of our model increases approx-
imately linearly with the number of categories Y , while
the original NOVUM scales quadratically. We compared
our model with two NOVUM settings: NOVUM with 1000
vertices and with 500 vertices per category. We report the
training time for each model to best converge on different
numbers of categories in Figure 2. Considering more 3D data
available in the future, an algorithm that scales up linearly is
crucial both theoretically and practically.

5.2. Classification and 3D Pose Estimation
Table 2 and Table 4 show classification and 3D pose esti-
mation performance on the base Imagenet3D dataset [23],
synthetic data generated using [22], its corrupted version
using corruptions like fog, snow, etc. from the Imagenet-C
dataset [8], and partial occlusion with levels ranging from
20− 80%. All our baselines have 3D information incorpo-
rated in them during training. NOVUM [11] is our ablative
baseline, which is learned without our Grouped neural Ver-
tex with Dynamically weighted Compositional contrastive
Learning. All model performances reported here are trained
till full convergence. In Table 2, we show comparisons of
classification task between our 3D-aware model and the
same backbones with standard classification heads. Our



Model Backbone IID Occlusion Corruption
L1 L2 L3 Average brightness frost snow fog Average

C
la

ss
. Resnet50 resnet50 84.8 58.8 34.7 11.2 33.9 71.4 37.5 19.2 63.9 48.0

NOVUM resnet50 85.7 64.6 37.6 13.4 38.5 75.1 46.1 30.1 72.6 55.9
DINOv2 vit-b-14 92.4 68.3 40.4 16.5 41.7 71.0 49.6 22.9 66.2 52.4

3D-CompNets vit-b-14 93.5 69.3 42.8 19.1 43.7 82.6 50.2 30.4 73.6 59.2

Po
se

E
st

. Resnet50 resnet50 55.6 40.4 27.5 14.4 27.4 50.8 29.1 38.7 51.3 42.5
NOVUM resnet50 57.2 42.6 28.8 15.6 29.0 51.9 32.5 41.0 52.7 44.5
DINOv2 vit-b-14 56.9 42.7 28.2 15.7 28.9 52.2 30.4 40.9 51.6 43.8

3D-CompNets vit-b-14 57.6 43.4 29.2 16.0 29.5 54.1 32.7 42.2 53.9 45.7

Table 4. Classification and 3D pose estimation on clean(IID), occluded, and corrupted ImageNet3D+ dataset. Different occlusion levels (L1,
L2, L3) and different corruption types applied. 3D pose estimation results are reported under accuracy π/6 ↑. Our approach outperforms
standard neural network models and the baseline NMMs(NOVUM) in both in-distribution and out-of-distribution testing.

model outperforms both the standard classification DNNs by
1.7% - 2.0% and the NOVUM baseline by 2.5% under the
IID testing. Moreover, in Table 4, our model also shows the
strongest performance on 3D pose estimation.

5.3. Generalization to Unknown Categories
In this section, we report the pose estimation performance
on unknown object categories to demonstrate our model’s
zero-shot generalization ability. We trained our proposed
3D-CompNets and the baseline models only on 178 object
categories from the ImageNet3D dataset and tested pose
estimation on the other 10 unknown categories.

To perform pose estimation on unknown categories, our
approach uses the category ŷ with the lowest feature recon-
struction loss as described in subsection 3.4 as the predicted
category and its corresponding vertex features Cŷ to estimate
the camera pose. ResNet and ViT baselines use their pose es-
timation heads to output the pose prediction directly. Table 3
shows the generalization performance of pose estimation
when testing on unknown categories. Figure 5 visualizes the
feature reconstruction and pose estimation. We also found
that our model tends to predict 3D poses using seen cate-
gories that are visually similar to the unknown category, e.g.,
68% of the unknown category ”teapot” uses ”kettle” features
and 95% of the unknown category ”unicycle” use ”bicycle”
features for 3D pose estimation.

5.4. Domain Shift
We also test the generalization ability to out-of-distribution
data. During testing only, we created occlusion data by
randomly covering the original testing images with out-of-
interest objects are occluders. We also applied different types
of natural corruption to the original testing images. Table 4
shows that our method outperforms all other baselines with
a large margin on both classification and 3D pose estima-
tion under occlusion and image corruption. We also report
real-to-synthetic generalization performances for classifica-
tion in Table 2. We demonstrate our neural vertex features

are strongly robust to various OOD scenarios under drastic
domain shifts, including occlusion, unusual weather environ-
ments and domain shifts from real to synthetic.

6. Conclusion and Discussion

In this work, we argue that endowing computer vision object
models with 3D representations will improve their perfor-
mance, particularly in challenging out-of-distribution (OOD)
scenarios. To demonstrate this, we scaled up 3D-CompNets
to 188 object categories taking advantage of a recent dataset
with 3D annotation. We design Grouped neural Vertex with
Dynamically weighted Compositional contrastive Learning
(GVDComp) to greatly increase the learning speed and im-
proved performance, resulting in an effective and efficient
scaling with the number of object classes. Note that 3D-
CompNets is trained to distinguish between vertex features,
but outperformed the traditional DNN design testing on ob-
ject classification and 3D pose estimation simultaneously, in
both IID and challenging OOD scenarios.

Note that we use the cuboid model as a rough approxima-
tion to represent objects across different shapes. Factoriza-
tion on the vertex features also simplifies the representation
and learning. Excitingly, we already achieved good results
with all those approximations. We believe in future works,
replacing the cuboid model and the factorized vertices can
help lead to an even better object representation.

Acknowledgements

AK acknowledges support via his Emmy Noether Research
Group funded by the German Research Foundation (DFG)
under Grant No. 468670075. AY acknowledges support
from ARL award W911NF2320008, ONR: N00014-21-
1-2690 and National Eye Institute (NEI) with Award ID:
R01EY037193.



References
[1] Yutong Bai, Angtian Wang, Adam Kortylewski, and Alan

Yuille. Coke: Localized contrastive learning for robust key-
point detection. In WACV, 2023. 6

[2] Irving Biederman. Recognition-by-components: a theory of
human image understanding. Psychological review, 94(2):
115, 1987. 1

[3] Irving Biederman. Recognizing depth-rotated objects: A
review of recent research and theory. Spatial vision, 13:241–
53, 2000. 1

[4] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. In ICML, pages 1597–1607, 2020. 3

[5] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua
Bengio. Deep learning. MIT Press, 2016. 1

[6] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, pages 9729–9738, 2020. 3,
6

[7] Olivier Henaff. Data-efficient image recognition with con-
trastive predictive coding. In ICML, pages 4182–4192. PMLR,
2020. 3

[8] Dan Hendrycks and Thomas Dietterich. Benchmarking neural
network robustness to common corruptions and perturbations.
arXiv, 2019. 2, 6, 7

[9] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The many faces of robust-
ness: A critical analysis of out-of-distribution generalization.
Proceedings of the IEEE/CVF international conference on
computer vision, pages 8340–8349, 2021.

[10] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt,
and Dawn Song. Natural adversarial examples. CVPR, pages
15262–15271, 2021. 2

[11] Artur Jesslen, Guofeng Zhang, Angtian Wang, Wufei Ma,
Alan Yuille, and Adam Kortylewski. Novum: Neural object
volumes for robust object classification. In ECCV, pages
264–281, 2024. 1, 2, 3, 6, 7

[12] Yannis Kalantidis, Mert Bulent Sariyildiz, Noe Pion, Philippe
Weinzaepfel, and Diane Larlus. Hard negative mixing for
contrastive learning. In Adv. Neural Inform. Process. Syst.,
pages 21798–21809. Curran Associates, Inc., 2020. 2, 3

[13] Prakhar Kaushik, Adam Kortylewski, and Alan Yuille. A
bayesian approach to ood robustness in image classification.
arXiv, 2024. 2, 3

[14] Prakhar Kaushik, Aayush Mishra, Adam Kortylewski, and
Alan Yuille. Source-free and image-only unsupervised do-
main adaptation for category level object pose estimation.
arXiv, 2024. 1, 2, 3, 6

[15] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. Adv. Neural
Inform. Process. Syst., 33:18661–18673, 2020. 3

[16] Gregor Koporec and Janez Perš. Deep learning performance
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Scaling 3D Compositional Models for Robust Classification and Pose Estimation

Supplementary Material

7. Grouped Neural Vertex with Dynamically
Weighted Compositional Contrastive Learn-
ing

In this section, we provide further details about our proposed
Grouped Neural Vertex with Dynamically Weighted Com-
positional Contrastive Learning. How our model samples
vertex features for the cross-category loss Lcross is outlined
in subsection 7.1. Additionally, we include the confusion
matrix for the Dynamically Weighted Compositional Con-
trastive method on the calibration dataset in subsection 7.2.

Figure 6. In our grouped cross-category contrasting, we contrast
every vertex feature from category y(yellow cube) to only a small
subset of the vertex features from each other category y′(blue cube).

7.1. Grouped Neural Vertex Contrasting

As described in subsubsection 3.3.1, we sample a small fixed
amount of vertex features Cm ∼ S(Cy′) from each category
y′ ∈ Y ′, Y ′ = Y \{y} as negative samples contrasting with
vertex feature Ck ∈ Cy of category y. As illustrated in Fig-
ure 6, previous contrastive learning in NOVUM conducts a
per-vertex contrasting on all the categories. Our Grouped
Neural Vertex Contrasting largely reduced the compute by
contrast every vertex feature from category y(yellow cube)
to only a small subset of the vertex features from each other
category y′(blue cubes). The ablation study on how many
vertex features from each category y′(blue cubes) are se-
lected can be found in Table 1. We find that 32 are enough
for efficient and effective cross-category contrastive learning.

7.2. Dynamically Weighted Compositional Con-
trasting

We provide the ten most confused categories ranking in the
orders of confusion level in Table 5.

Table 5. Most confused categories from the confusion matrix on
calibration set.

confusion True label Pred label
0.55 jar pot
0.38 bookshelf cabinet
0.32 bicycle pump micrometer
0.32 washing machine washer
0.26 pencil pen
0.25 air hammer power drill
0.25 bumper car go kart
0.21 bicycle built for two bicycle
0.21 vending machine refrigerator

8. Contribution of In-category loss and Cross-
category loss

We presents additioanl ablation analysis on the contributions
of in-category loss and cross-category loss. Table Table 6
In-category loss focuses on distinguishing between vertices
inside an object, thus mainly helping pose estimation by iden-
tifying different parts of the object, while the cross-category
loss benefits classification because it separates vertices from
other object categories.

Table 6. Ablation study of individual loss contributions (accuracy
↑) on in-distribution testing with 188 ImageNet3D categories.

Loss Classification Pose estimation

Intra-category only 17.8 56.7
Cross-category only 90.1 1.3

Both (Ours) 93.5 57.6

9. Error Case Analysis
Through per-category analysis on the IID performance, we
found our 3D-compositional model performs less satisfacto-
rily on elongated object classes, see Figure 7 for examples.
The reason is that these objects look very similar, and some-
times even identical when facing forward and backwards, left
and right, or when rotated along their dominant geometric
axis. This ambiguity causes the main difficulty in learn-
ing distinct vertex features. Removing the elongated object
classes from ImageNet3D+ leads to further improvement by
our model. The 10 elongated objects are ”ax”, ”paintbrush”,
”bow”, ”comb”, ”fork”, ”hammer”, ”french horn”, ”knife”,
”pen” and ”pencil”. By removing them from the testing data
only, our model performance increases in both classification
and 3D pose estimation(see Table 7).

From the confusion matrix we obtained from the testing



set, we found that confusion always appears between visually
similar object categories. The most confused categories are
”air hammer”/”power drill” and ”backpack”/”suitcase”, as
shown in Figure 8 More details can be found in appendix.

Figure 7. Example images of elongated objects in the ImageNet3D+
dataset. From left to right and top to bottom, the object classes are
”comb”, ”fork”, ”pen” and ”pencil”.

Figure 8. Example images the most confused classes by our model:
25% of ”air hammer” are predicted ”power drill” and 16% of
”backpack” are predicted as ”suitcase”.

Classification
IID Occ. Corr.

All classes 88.2 38.8 57.9
w/o Elongated 89.3 39.7 58.5

3D Pose Estimation
IID Occ. Corr.

All classes 57.6 29.5 45.7
w/o Elongated 59.3 32.8 48.3

Table 7. The classification and pose estimation results by our model
on the object classes including and excluding the ten elongated
objects. Occlusion and Corruption results are averaged.

10. Visualizations
10.1. Synthetic dataset visualisation
In order to evaluate our method in many different settings,
we generated 3D consistent data following [22]. Given some
3D CAD models, we were able to generate data with known
objects class an 3D pose annotation. The usage of synthetic
data is appealing since it allows to control many parame-
ters during the dataset generation. Benchmark datasets like
ImageNet3D can have certain bias (e.g., imbalance in the

number of objects per class). Hence, we decided to generate
synthetic images to measure our model’s capacity to adapt
to domain shift (i.e., real-to-synthetic generalization). In
order to show the quality of the generated images, we show
a subset of the generated data in Fig. 9.

(a) Synthetic, phone (b) Synthetic, table (c) Synthetic, bike

(d) Synthetic, car (e) Synthetic, armchair (f) Synthetic, couch

Figure 9. Visualisation of the generated synthetic data.

(a) Clean image: door (b) L2 Occlusion: fire extinguisher

(c) Fog corrupted image: guitar (d) Pixelate corrupted image: shovel

Figure 10. Qualitative results showing the predictions of our ap-
proach for classification and 3D pose estimation

10.2. Qualitative results
We provide a few qualitative results in Fig. 10. We provide an
example for the clean images of ImageNet3D+, an example
of synthetic occlusion of occluded-ImageNet3D+, and two
examples of corrupted images (notably fog and pixelate).
We represent side-by-side the input image along with the
input image overlaid by the prediction of our approach. We
selected the CAD model of the class that was predicted by
our approach and we overlaid the CAD model in the pose
predicted by our approach.
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